Have a personal or library account? Click to login

Experimental Validation of a Fixed Bed Solid Sorption Mathematical Model Using Zeolite 13XBF

Open Access
|Jun 2022

References

  1. [1] IEA-Publications. Renewable Energy Market Update. Outlook for 2021 and 2022. Paris: International Energy Agency, 2021.
  2. [2] Langer A. 300 Millionen Euro gegen Gas-Abhängigkeit (300 million euros against gas dependency) [Online]. [Accessed 08.04.2022]. Available: https://www.meinbezirk.at/c-politik/300-millionen-euro-gegen-gasabhaengigkeit_a5261959 (in German)
  3. [3] APA. Eine Mehrheit der Abgeordneten im EU-Parlament hat einen sofortigen Lieferstopp von Öl, Kohle und Gas aus Russland gefordert (A majority of MEPs in the European Parliament have called for an immediate halt to the supply of oil, coal and gas from Russia) [Online]. [Accessed 08 04 2022]. Available: https://www.vol.at/eu-parlament-furlieferstopp-von-russischem-gas-ol-kohle/7363453 (in German)
  4. [4] Al Jazeera Nes Agencies. US, EU announce plan to reduce European reliance on Russian gas [Online]. [Accessed 08.04.2022]. Available: https://www.aljazeera.com/news/2022/3/25/us-eu-launch-team-to-reduce-european-reliance-on-russian-gas
  5. [5] Dincer I., Rosen M. Thermal Energy Storage - Systems and Applications. Canada: Wiley and Sons Publication, 2011.
  6. [6] N’Tsoukpoe K. E., et al. A review on long-term sorption solar energy storage. Renewable and Sustainable Energy Reviews 2009:13(9):2385–2396. https://doi.org/10.1016/j.rser.2009.05.008
  7. [7] Yu N., et al. Sorption thermal storage for solar energy. Progress in Energy and Combustion Science 2013:39(5)489–514. https://doi.org/10.1016/j.pecs.2013.05.004
  8. [8] Krese G., et al. Thermochemical seasonal solar energy storage for heating and cooling of buildings. Energy and Buildings 2018:164:239–253. https://doi.org/10.1016/j.enbuild.2017.12.057
  9. [9] Kousksou T., et al. Energy storage: Applications and challenges. Solar Energy Materials and Solar Cells 2014:120:59–80. https://doi.org/10.1016/j.solmat.2013.08.015
  10. [10] Paksoy H. Ö. Thermal energy storage for sustainable energy consumption: Fundamentals, case studies and design. Springer, 2007.10.1007/978-1-4020-5290-3
  11. [11] Zondag H., et al. Prototype thermochemical heat storage with open reactor system. Applied Energy 2013:109:360–365. https://doi.org/10.1016/j.apenergy.2013.01.082
  12. [12] Mette B., Kerskes H., Drück H. Concepts of long-term thermochemical energy storage for solar thermal applications e selected examples. Energy Procedia 2012:30:321–330. https://doi.org/10.1016/j.egypro.2012.11.038
  13. [13] Zondag H. A. Engineering assessment of reactor design for thermochemical storage of solar heat. Presented the 11th International Conference on Thermal Energy Storage, Stockholm, Sweden, 2009.
  14. [14] Opel O. Thermochemical storage materials research and TGA/DSC hydration studies. Presented at the IC-SES Internation Conference on Sustainable Energy Storage, Belfast, UK, 2011.
  15. [15] Jänchen J., Stach H. Adsorption properties of porous materials for solar thermal energy storage and heat pump applications. Energy Procedia 2012:30:289–293. https://doi.org/10.1016/j.egypro.2012.11.034
  16. [16] Fischer U. What is the best possible heat storage density for a seasonal adsorptive thermal energy storage. Presented at the 11th International Conference on Thermal Energy Storage, Stockholm, Sweden, 2009.
  17. [17] Engel G., et al. Simulation of a seasonal, solar-driven sorption storage heating system. Journal of Energy Storage 2017:13:40–47. https://doi.org/10.1016/j.est.2017.06.001
  18. [18] Tatsidjodoung P., et al. Experimental and numerical investigations of a zeolite 13X/water reactor for solar heat storage in buildings. Energy Conversion and Management 2016:108:488–500. https://doi.org/10.1016/j.enconman.2015.11.011
  19. [19] Gaeini M., et al. Effect of kinetics on the thermal performance of a sorption heat storage reactor. Applied Thermal Engineering 2016:102:520–531. https://doi.org/10.1016/j.applthermaleng.2016.03.055
  20. [20] Mette B., et al. Experimental and numerical investigations on the water vapor adsorption isotherms and kinetics of binderless zeolite 13X. International Journal of Heat and Mass Transfer 20014:71:555–561. https://doi.org/10.1016/j.ijheatmasstransfer.2013.12.061
  21. [21] Kuznik F., et al. Numerical modelling and investigations on a full-scale zeolite 13X open heat storage for buildings. Renewable Energy 2019:132:761–772. https://doi.org/10.1016/j.renene.2018.07.118
  22. [22] Weber R., Kerskes H., Drück H. Development of a Combined Hot Water and Sorption Store for Solar Thermal Systems. Energy Procedia 2014:48:464–473. https://doi.org/10.1016/j.egypro.2014.02.055
  23. [23] Weber R., et al. SolSpaces- Testing and Performance Analysis of a Segmented Sorption Store for Solar Thermal Space Heating. Energy Procedia 2016:91:250–258. https://doi.org/10.1016/j.egypro.2016.06.214
  24. [24] Bertsch F., et al. Comparison of the Thermal Perfimance of a Solar Heating System with Open and Closed Solid Sorption Storage. Energy Procedia 2014:48:280–289. https://doi.org/10.1016/j.egypro.2014.02.033
  25. [25] Zettl B., Englmair G., Steinmaurer G. Development of a revolving drum reactor for open-sorption heat storage processes. Applied Thermal Engineering 2014:70:42–49. https://doi.org/10.1016/j.applthermaleng.2014.04.069
  26. [26] Reichl C., et al. Fluid dynamics simulations for an open-sorption heat storage drum reactor based on thermophysical kinetics and experimental observations. Applied Thermal Engineering 2016:107:994–1007. https://doi.org/10.1016/j.applthermaleng.2016.06.119
  27. [27] Daborer-Prado N., et al. Mathematical Modelling of Rotating Sorption Heat Storages. Proceedings of the Solar World Congress 2019.10.18086/swc.2019.22.01
  28. [28] Dada A., et al. Langmuir, Freundlich, Temkin and Dubinin-Radushkevich Isotherms Studies of Equilibrium Sorption of Zn2+Unto Phosphoric Acid Modi. Journal of Applied Chemistry 2012:3(1):38–45. https://doi.org/10.9790/5736-0313845
  29. [29] Ayawei N., Ebelegi A. N,. Wankasi D. Modelling and Interpretation of Adsorption Isotherms. Journal of Chemistry 2017:1:1–11. https://doi.org/10.1155/2017/3039817
  30. [30] CWK. Zeolites [Online]. [Accessed 08.02.2022]. Available: https://www.cwk-bk.de/en/products/molecular-sieves/zeolites
  31. [31] Glueckauf E. Theory of chomatography. Part 10- formulae for diffusion into spheres and their application to chomatography. Transaction of the Faraday Society 1955:51:1540–1551. https://doi.org/10.1039/tf9555101540
DOI: https://doi.org/10.2478/rtuect-2022-0029 | Journal eISSN: 2255-8837 | Journal ISSN: 1691-5208
Language: English
Page range: 377 - 391
Published on: Jun 21, 2022
Published by: Riga Technical University
In partnership with: Paradigm Publishing Services
Publication frequency: 2 times per year

© 2022 Nayrana Daborer-Prado, Gayaneh Issayan, Bernhard Zettl, published by Riga Technical University
This work is licensed under the Creative Commons Attribution 4.0 License.