[2] Langer A. 300 Millionen Euro gegen Gas-Abhängigkeit (300 million euros against gas dependency) [Online]. [Accessed 08.04.2022]. Available: https://www.meinbezirk.at/c-politik/300-millionen-euro-gegen-gasabhaengigkeit_a5261959 (in German)
[3] APA. Eine Mehrheit der Abgeordneten im EU-Parlament hat einen sofortigen Lieferstopp von Öl, Kohle und Gas aus Russland gefordert (A majority of MEPs in the European Parliament have called for an immediate halt to the supply of oil, coal and gas from Russia) [Online]. [Accessed 08 04 2022]. Available: https://www.vol.at/eu-parlament-furlieferstopp-von-russischem-gas-ol-kohle/7363453 (in German)
[4] Al Jazeera Nes Agencies. US, EU announce plan to reduce European reliance on Russian gas [Online]. [Accessed 08.04.2022]. Available: https://www.aljazeera.com/news/2022/3/25/us-eu-launch-team-to-reduce-european-reliance-on-russian-gas
[6] N’Tsoukpoe K. E., et al. A review on long-term sorption solar energy storage. Renewable and Sustainable Energy Reviews 2009:13(9):2385–2396. https://doi.org/10.1016/j.rser.2009.05.008
[8] Krese G., et al. Thermochemical seasonal solar energy storage for heating and cooling of buildings. Energy and Buildings 2018:164:239–253. https://doi.org/10.1016/j.enbuild.2017.12.057
[10] Paksoy H. Ö. Thermal energy storage for sustainable energy consumption: Fundamentals, case studies and design. Springer, 2007.10.1007/978-1-4020-5290-3
[12] Mette B., Kerskes H., Drück H. Concepts of long-term thermochemical energy storage for solar thermal applications e selected examples. Energy Procedia 2012:30:321–330. https://doi.org/10.1016/j.egypro.2012.11.038
[13] Zondag H. A. Engineering assessment of reactor design for thermochemical storage of solar heat. Presented the 11th International Conference on Thermal Energy Storage, Stockholm, Sweden, 2009.
[14] Opel O. Thermochemical storage materials research and TGA/DSC hydration studies. Presented at the IC-SES Internation Conference on Sustainable Energy Storage, Belfast, UK, 2011.
[15] Jänchen J., Stach H. Adsorption properties of porous materials for solar thermal energy storage and heat pump applications. Energy Procedia 2012:30:289–293. https://doi.org/10.1016/j.egypro.2012.11.034
[16] Fischer U. What is the best possible heat storage density for a seasonal adsorptive thermal energy storage. Presented at the 11th International Conference on Thermal Energy Storage, Stockholm, Sweden, 2009.
[17] Engel G., et al. Simulation of a seasonal, solar-driven sorption storage heating system. Journal of Energy Storage 2017:13:40–47. https://doi.org/10.1016/j.est.2017.06.001
[18] Tatsidjodoung P., et al. Experimental and numerical investigations of a zeolite 13X/water reactor for solar heat storage in buildings. Energy Conversion and Management 2016:108:488–500. https://doi.org/10.1016/j.enconman.2015.11.011
[20] Mette B., et al. Experimental and numerical investigations on the water vapor adsorption isotherms and kinetics of binderless zeolite 13X. International Journal of Heat and Mass Transfer 20014:71:555–561. https://doi.org/10.1016/j.ijheatmasstransfer.2013.12.061
[21] Kuznik F., et al. Numerical modelling and investigations on a full-scale zeolite 13X open heat storage for buildings. Renewable Energy 2019:132:761–772. https://doi.org/10.1016/j.renene.2018.07.118
[22] Weber R., Kerskes H., Drück H. Development of a Combined Hot Water and Sorption Store for Solar Thermal Systems. Energy Procedia 2014:48:464–473. https://doi.org/10.1016/j.egypro.2014.02.055
[23] Weber R., et al. SolSpaces- Testing and Performance Analysis of a Segmented Sorption Store for Solar Thermal Space Heating. Energy Procedia 2016:91:250–258. https://doi.org/10.1016/j.egypro.2016.06.214
[24] Bertsch F., et al. Comparison of the Thermal Perfimance of a Solar Heating System with Open and Closed Solid Sorption Storage. Energy Procedia 2014:48:280–289. https://doi.org/10.1016/j.egypro.2014.02.033
[25] Zettl B., Englmair G., Steinmaurer G. Development of a revolving drum reactor for open-sorption heat storage processes. Applied Thermal Engineering 2014:70:42–49. https://doi.org/10.1016/j.applthermaleng.2014.04.069
[26] Reichl C., et al. Fluid dynamics simulations for an open-sorption heat storage drum reactor based on thermophysical kinetics and experimental observations. Applied Thermal Engineering 2016:107:994–1007. https://doi.org/10.1016/j.applthermaleng.2016.06.119
[27] Daborer-Prado N., et al. Mathematical Modelling of Rotating Sorption Heat Storages. Proceedings of the Solar World Congress 2019.10.18086/swc.2019.22.01
[28] Dada A., et al. Langmuir, Freundlich, Temkin and Dubinin-Radushkevich Isotherms Studies of Equilibrium Sorption of Zn2+Unto Phosphoric Acid Modi. Journal of Applied Chemistry 2012:3(1):38–45. https://doi.org/10.9790/5736-0313845
[29] Ayawei N., Ebelegi A. N,. Wankasi D. Modelling and Interpretation of Adsorption Isotherms. Journal of Chemistry 2017:1:1–11. https://doi.org/10.1155/2017/3039817
[31] Glueckauf E. Theory of chomatography. Part 10- formulae for diffusion into spheres and their application to chomatography. Transaction of the Faraday Society 1955:51:1540–1551. https://doi.org/10.1039/tf9555101540