Have a personal or library account? Click to login

Factors Affecting Photo Voltaic Solar Energy Usage Intention in Rural Households in Bangladesh: A Structural Equation Modelling Approach

Open Access
|May 2022

References

  1. [1] Uddin M. N., et al. Renewable energy in Bangladesh : Status and prospects. Energy Procedia 2019:160:655–661. https://doi.org/10.1016/j.egypro.2019.02.21810.1016/j.egypro.2019.02.218
  2. [2] Islam S. A review on recent growth of electrical power generation and power demand in Bangladesh and some suggestions for combating the upcoming challenges. Energy Procedia 2019:160:60–67. https://doi.org/10.1016/j.egypro.2019.02.11910.1016/j.egypro.2019.02.119
  3. [3] Rahman A. BD to import 1,000MW hydro-power from Myanmar, China. Dhaka Tribune, 2017.
  4. [4] Crago C. L., Chernyakhovskiy I. Residential solar photovoltaic technology adoption: An empirical investigation of state policy effectiveness. Presented on the 2014 at the Agricultural & Applied Economics Association’s Annual Meeting, Minneapolis, USA, 2014.
  5. [5] Hoen B., et al. An analysis of the effects of residential photovoltaic energy systems on home sales prices in California. Denver: EETD, 2011.10.2172/1013074
  6. [6] Graziano M., Gillingham K. Spatial patterns of solar photovoltaic system adoption: the influence of neighbors and the built environment. J. Econ. Geogr. 2015:15(4):815–839. https://doi.org/10.1093/jeg/lbu03610.1093/jeg/lbu036
  7. [7] Lobel R., Perakis G. Consumer choice model for forecasting demand and designing incentives for solar technology. Sloan: MITSloan, 2011. http://dx.doi.org/10.2139/ssrn.174842410.2139/ssrn.1748424
  8. [8] Hughes J. E., Podolefsky M. Getting green with solar subsidies: evidence from the California solar initiative. J. Assoc. Environ. Resour. Econ. 2015:2(2):235–275. https://doi.org/10.1086/68113110.1086/681131
  9. [9] Sulaiman J., Azman A., Saboori B. Development of solar energy in Sabah Malaysia: The case of Trudgill’s Perception. Int. J. Sustain. Energy Environ. Res. 2014:3:90–99.
  10. [10] W. Mann. Solar Renewable Energy Certificate Markets: Assessing the Volatility Impact. Springer, 2014(73).
  11. [11] Hirth L. Market value of solar power: Is photovoltaics cost-competitive? IET Renew. Power Gener. 2014:9:37–45. https://doi.org/10.1049/iet-rpg.2014.010110.1049/iet-rpg.2014.0101
  12. [12] Huo M., Zhang X., He J. Causality relationship between the photovoltaic market and its manufacturing in China, Germany, the US, and Japan. Front. Energy. 2011:5:43–48. https://doi.org/10.1007/s11708-010-0135-510.1007/s11708-010-0135-5
  13. [13] Palage K., Lundmark R., Söderholm P. Public policies and solar PV innovation: an empirical study based on patent data. Presented at the 37th IAEE Int. Conf. on Energy Econ. New York, USA, 2014
  14. [14] Adachi C., Rowlands I. H. The role of policies in supporting the diffusion of solar photovoltaic systems: Experiences with Ontario, Canada’s Renewable Energy Standard Offer Program. Sustainability 2010:2:30–47. https://doi.org/10.3390/su201003010.3390/su2010030
  15. [15] Resch R., Solar Energy Industries Association. US Solar Industry Continues Rapid Growth. Washington: SEIA, 2014.
  16. [16] Vorrath S. One-quarter of Australian homes now have solar. Renew Economy, 2017.
  17. [17] International Trade Administration. United Arab Emirates - Renewable Energy. Washington: U.S. Department of Commerce, 2018.
  18. [18] Masukujjaman M., et al. Purchase Intention of Renewable Energy Technology in Rural Areas in Bangladesh: Empirical Evidence. Renew. Energy 2021:170:639–651. https://doi.org/10.1016/j.renene.2021.01.12510.1016/j.renene.2021.01.125
  19. [19] Kabir E., et al. Solar energy: Potential and future prospects. Renew. Sustain. Energy Rev. 2018:82:894–900. https://doi.org/10.1016/j.rser.2017.09.09410.1016/j.rser.2017.09.094
  20. [20] Spanos Y. E., Prastacos G. P., Poulymenakou A. The relationship between information and communication technologies adoption and management. Information & Management 2002:39:659–675. https://doi.org/10.1016/S0378-7206(01)00141-010.1016/S0378-7206(01)00141-0
  21. [21] Dewan S., Kraemer K. L. Information technology and productivity: evidence from country-level data. Manag. Sci. 2000:46:548–562.10.1287/mnsc.46.4.548.12057
  22. [22] Davies S., Davies G. The diffusion of process innovations. Campbridge University Press, 1979.10.1016/0014-2921(79)90023-0
  23. [23] Dunlap R. E., Scarce R. Poll trends: Environmental problems and protection. Public Opin. Q. 1991:55:651–672.10.1086/269288
  24. [24] Leonidou C. N., Leonidou L. C. Research into environmental marketing/management: a bibliographic analysis. Eur. J. Mark. 2011:45(1/2):68–103. https://doi.org/10.1108/0309056111109560310.1108/03090561111095603
  25. [25] Plouffe C. R., Hulland J. S., Vandenbosch M. Richness versus parsimony in modeling technology adoption decisions— understanding merchant adoption of a smart card-based payment system. Inf. Syst. Res. 2001:12(2):208–222. https://doi.org/10.1287/isre.12.2.208.969710.1287/isre.12.2.208.9697
  26. [26] Agarwal R., Prasad J. The role of innovation characteristics and perceived voluntariness in the acceptance of information technologies. Decis. Sci. 1997:28(3):557–582. https://doi.org/10.1111/j.1540-5915.1997.tb01322.x10.1111/j.1540-5915.1997.tb01322.x
  27. [27] Moore G.C., Benbasat I. Development of an instrument to measure the perceptions of adopting an information technology innovation. Inf. Syst. Res. 1991:2(3):192–222. https://doi.org/10.1287/isre.2.3.19210.1287/isre.2.3.192
  28. [28] Fishbein M., et al. Predicting and understanding family planning behaviors. Understanding attitudes and predicting social behavior. Englewood Cliffs: Prentice Hall, 1980.
  29. [29] Davis F. D. Perceived Usefulness, Perceived Ease of Use, and User Acceptance of Information Technology. MIS Q. 1989:13(3):319–340. https://doi.org/10.2307/24900810.2307/249008
  30. [30] Davis R., et al. User Acceptance of Computer Technology: A Comparison of Two Theoretical Models. Manage. Sci.1989:35(8):982–1003. https://doi.org/10.1287/mnsc.35.8.98210.1287/mnsc.35.8.982
  31. [31] Ajzen I. The Theory of Planned Behavior. Organ. Behav. Hum. Decis. Process. 1991:50:179–21110.1016/0749-5978(91)90020-T
  32. [32] Falko F. S., Presseau J., Araújo-Soares V. Time to retire the theory of planned behaviour. Heal. Psych. Rev. 2014:8(1):1–7. https://doi.org/10.1080/17437199.2013.86971010.1080/17437199.2013.86971025053004
  33. [33] Hai L. C., Alam Kazmi S. H. Dynamic support of government in online shopping. A. Soc. Sci, 2015:11(22):1–9. https://doi.org/10.5539/ass.v11n22p110.5539/ass.v11n22p1
  34. [34] Karatu V. M. H., Mat N. K. N. The mediating effects of green trust and perceived behavioral control on the direct determinants of intention to purchase green products in Nigeria. Mediterr. J. Soc. Sci. 2015:6(4):256. https://doi.org/10.5901/mjss.2015.v6n4p25610.5901/mjss.2015.v6n4p256
  35. [35] Jaiswal D., Kant R. Green purchasing behaviour: A conceptual framework and empirical investigation of Indian consumers. J. Retail. Consum. Serv. 2018:41:60–69. https://doi.org/10.1016/j.jretconser.2017.11.00810.1016/j.jretconser.2017.11.008
  36. [36] Anderson K. Australia leads the way in small scale solar installs. Solar Guide [Online]. [Accessed 02.04.2022] Available: https://www.solarguide.co.uk/australia-leads-the-way-in-small-scale-solar-installs#/
  37. [37] Sang Y.-N., Bekhet H. A. Exploring factors influencing electric vehicle usage intention: an empirical study in Malaysia. Int. J. Bus. Soc. 2015:16(1):57–74. https://doi.org/10.33736/ijbs.554.201510.33736/ijbs.554.2015
  38. [38] Alam S. S. Adoption of internet in Malaysian SMEs. J. Small Bus. Enterp. Dev. 2009:16(2):240–255. https://doi.org/10.1108/1462600091095603810.1108/14626000910956038
  39. [39] Borenstein S. Electricity Rate Structures and the Economics of Solar PV: Could Mandatory Time-of-Use Rates Undermine California’s Solar Photovoltaic Subsidies? Berkeley: CSEM, UCEI, 2007.
  40. [40] Yadav R., Pathak G. S. Young consumers’ intention towards buying green products in a developing nation: Extending the theory of planned behavior. J. Clean. Prod. 2016:135:732–739. https://doi.org/10.1016/j.jclepro.2016.06.12010.1016/j.jclepro.2016.06.120
  41. [41] Mostafa M. M. Gender differences in Egyptian consumers’ green purchase behaviour: the effects of environmental knowledge, concern and attitude. Int. J. Consum. Stud. 2007:31(3):220–229. https://doi.org/10.1111/j.1470-6431.2006.00523.x10.1111/j.1470-6431.2006.00523.x
  42. [42] Setyawan A., et al. Green product buying intentions among young consumers: Extending the application of theory of planned behavior. Probl. Perspect. Manag. 2018:16(2):145–154. https://doi.org/10.21511/ppm.16(2).2018.1310.21511/ppm.16(2).2018.13
  43. [43] Fransson N., Gärling T. Environmental concern: Conceptual definitions, measurement methods, and research findings. J. Environ. Psychol. 1999:19(4):369–382. https://doi.org/10.1006/jevp.1999.014110.1006/jevp.1999.0141
  44. [44] Howard J., Moore W. Changes in consumer behavior over the product life cycle. Readings in the management of innovation. Boston: Pitman. 1982.
  45. [45] Sathye M. Adoption of Internet banking by Australian consumers: an empirical investigation. Int. J. Bank Mark. 1999:17(7):324–334. https://doi.org/10.1108/0265232991030568910.1108/02652329910305689
  46. [46] Fishbein R. E., Sanghvi A. P., Unit A. E. Survey of productive uses of electricity in rural areas. Washington, 2003.
  47. [47] Zografakis N., et al. Assessment of public acceptance and willingness to pay for renewable energy sources in Crete. Renew. Sustain. Energy Rev. 2010:14:1088–1095. https://doi.org/10.1016/j.rser.2009.11.00910.1016/j.rser.2009.11.009
  48. [48] Wüstenhagen R., Wolsink M., Bürer M. J. Social acceptance of renewable energy innovation: An introduction to the concept. Energy Policy 2007:35(5):2683–2691. https://doi.org/10.1016/j.enpol.2006.12.00110.1016/j.enpol.2006.12.001
  49. [49] Cohen W. M., Levinthal D. A. Absorptive capacity: A new perspective on learning and innovation. Adm. Sci. Q. 1990:35(1):128–152. https://doi.org/10.2307/239355310.2307/2393553
  50. [50] Pagiaslis A., Krontalis A. K. Green consumption behavior antecedents: Environmental concern, knowledge, and beliefs. Psychol. Mark. 2014:31(5):335–348. https://doi.org/10.1002/mar.2069810.1002/mar.20698
  51. [51] Mark N., Law M. Encouraging green purchase behaviours of Hong Kong consumers. Asian J. Bus. Res. 2015:5(2). https://doi.org/10.14707/ajbr.15001310.14707/ajbr.150013
  52. [52] Basha M. B., et al. Consumers attitude towards organic food. Procedia Econ. Financ. 2015:31:444–452. https://doi.org/10.1016/S2212-5671(15)01219-810.1016/S2212-5671(15)01219-8
  53. [53] Suki N. M. Investigating the measurement of Consumer ecological behaviour, environmental knowledge, healthy food, and healthy way of life. Int. J. Soc. Ecol. Sustain. Dev. 2014:5(1):12–21. https://doi.org/10.4018/ijsesd.201401010210.4018/ijsesd.2014010102
  54. [54] Peter R., Dickie L., Peter V. M. Adoption of photovoltaic power supply systems: A study of key determinants in India. Renew. Energy 2006:31(14):2272–2283. https://doi.org/10.1016/j.renene.2005.11.00110.1016/j.renene.2005.11.001
  55. [55] Alam S. S., et al. A survey on renewable energy development in Malaysia: Current status, problems and prospects. Environ. Clim. Technol. 2016:17:5–17. https://doi.org/10.1515/rtuect-2016-000210.1515/rtuect-2016-0002
  56. [56] Sarker S. R., Roy P. P., Zuberi M. I. Home Garden: A Genetic Resource of Jackfruit (Artocarpus heterophyllus Lam) in Semi Arid Region of Bangladesh. Gene Conserv. 2015:14(57):1–28.
  57. [57] Hair J. F., et al. Multivariate Data Analysis. 5th edition. New York: Pearson, 1998.
  58. [58] Chen K., Deng T. Research on the green purchase intentions from the perspective of Product knowledge. Sustain. 2016:8(9):943. https://doi.org/10.3390/su809094310.3390/su8090943
  59. [59] Yang M., Al-Shaaban S., Nguyen T. B. Consumer attitude and purchase intention towards organic food: A quantitative study of China. 2014.
  60. [60] Alam S. S., et al. Factors affecting e-commerce adoption in the electronic manufacturing companies in Malaysia. Int. J. Commer. Manag. 2007:17(1/2):125–139. https://doi.og/10.1108/1056921071077650310.1108/10569210710776503
  61. [61] Alam S. S., et al. An empirical study of factors affecting electronic commerce adoption among SMEs in Malaysia. J. Bus. Econ. Manag. 2011:12(2):375–399. https://doi.org/10.3846/16111699.2011.57674910.3846/16111699.2011.576749
  62. [62] Ahmad A., et al. Perceptions on Renewable Energy Use in Malaysia : Mediating Role of Attitude. J. Pengur. 2014:41:123–131. https://doi.org/10.17576/pengurusan-2014-41-1110.17576/pengurusan-2014-41-11
  63. [63] Moghavvemi S., et al. An empirical study of IT innovation adoption among small and medium sized enterprises in Klang Valley, Malaysia. Soc. Technol. Technol. 2011:1:267–282.
  64. [64] Lo S. M., Power D. An empirical investigation of the relationship between product nature and supply chain strategy. Supply Chain Manag. 2010:15(2):139–153. https://doi.org/10.1108/1359854101102874110.1108/13598541011028741
  65. [65] Ryans A. B. Estimating Consumer Preferences for a New Durable Brand in an Established Product Class. J. Mark. Res. 1974:11(4):434–443. https://doi.org/10.2307/315129010.2307/3151290
  66. [66] Podsakoff P. M., et al. Common Method Biases in Behavioral Research: A Critical Review of the Literature and Recommended Remedies. J. Appl. Psychol. 2003:88(5):879–903. https://doi.org/10.1037/0021-9010.88.5.87910.1037/0021-9010.88.5.87914516251
  67. [67] Alexander N., Colgate M. Retail financial services: transaction to relationship marketing. Eur. J. Mark. 2000:34(8):938–953. https://doi.org/10.1108/0309056001033143210.1108/03090560010331432
  68. [68] Malhotra N. K. Marketing research, An applied orientation, 3rd Edition. New York: Pearson, 1999.
  69. [69] Hair J. F., et al. A premier on partial least squares structural equation modeling (PLS-SEM). Newbuty Park: Sage Publications, 2014.
  70. [70] Bryman A., Cramer D. Quantitative data analysis with SPSS release 10 for Windows: A guide for social scientists. Oxford: Routledge, 2002.10.4324/9780203471548
  71. [71] Kline R. B. Convergence of structural equation modeling and multilevel modeling. The SAGE Handbook of Innovation in Social Research Methods. Newbury Park: SAGE, 2011. https://dx.doi.org/10.4135/9781446268261.n3110.4135/9781446268261.n31
  72. [72] Bagozzi R. P., Yi Y. On the evaluation of structural equation models. J. Acad. Mark. Sci. 1988:16:74–94. https://doi.org/10.1007/BF0272332710.1007/BF02723327
  73. [73] Holbert R. L., Stephenson M. T. Structural Equation Modeling in the Communication Sciences, 1995–2000. Hum. Commun. Res. 2002:28:1995–2000. https://doi.org/10.1111/j.1468-2958.2002.tb00822.x10.1111/j.1468-2958.2002.tb00822.x
  74. [74] Bentler P. M., Bonett D. G. Significance tests and goodness of fit in the analysis of covariance structures. Psychol. Bull. 1980:88:588–606. https://doi.org/10.1037/0033-2909.88.3.58810.1037/0033-2909.88.3.588
  75. [75] Jöreskog K. G., Sörbom D. LISREL 8: Structural equation modeling with the SIMPLIS command language. US: Scientific Software International, 1993.
  76. [76] Fornell C., Larcker D. F. Structural Equation Models with Unobservable Variables and Measurement Error: Algebra and Statistics. J. Mark. Res. 1981:18(3):382–388. https://doi.org/10.2307/315098010.2307/3150980
  77. [77] McDonald R. P., Ho M.-H. R. Principles and practice in reporting structural equation analyses. Psychol. Methods. 2002:7(1):64–82. https://doi.org/10.1037/1082-989x.7.1.6410.1037/1082-989X.7.1.6411928891
DOI: https://doi.org/10.2478/rtuect-2022-0021 | Journal eISSN: 2255-8837 | Journal ISSN: 1691-5208
Language: English
Page range: 276 - 293
Published on: May 22, 2022
Published by: Riga Technical University
In partnership with: Paradigm Publishing Services
Publication frequency: 2 times per year

© 2022 Syed Shah. Alam, Mohammad Masukujjaman, Chieh-Yu Lin, Nor Asiah. Omar, Meng Na, Abdullah Sanusi Othman, published by Riga Technical University
This work is licensed under the Creative Commons Attribution 4.0 License.