Have a personal or library account? Click to login
Possibilities of Balancing Buildings Energy Demand for Increasing Energy Efficiency in Latvia Cover

Possibilities of Balancing Buildings Energy Demand for Increasing Energy Efficiency in Latvia

Open Access
|Mar 2022

References

  1. [1] International Energy Agency. Global Energy and CO2 Status Report. Oecd-Iea. Paris: IEA, 2019.
  2. [2] IEA and UNEP. 2019 Global Status Report for Buildings and Construction. Paris: IEA, 2019.
  3. [3] Staveckis A., Borodinecs A. Impact of impinging jet ventilation on thermal comfort and indoor air quality in office buildings. Energy Build. 2021:235:110738. https://doi.org/10.1016/j.enbuild.2021.110738.10.1016/j.enbuild.2021.110738
  4. [4] Pakere I., et al. Climate Index for District Heating System. Environmental and Climate Technologies 2020:24(1):406–418. https://doi.org/10.2478/rtuect-2020-002410.2478/rtuect-2020-0024
  5. [5] Li W., et al. A novel operation approach for the energy efficiency improvement of the HVAC system in office spaces through real -time big data analytics. Renewable and Sustainable Energy Reviews 2020:127:109885. https://doi.org/10.1016/j.rser.2020.10988510.1016/j.rser.2020.109885
  6. [6] Hang L., Kim D. H. Enhanced model-based predictive control system based on fuzzy logic for maintaining thermal comfort in IoT smart space. Applied Sciences 2018:8(7):1031. https://doi.org/10.3390/app807103110.3390/app8071031
  7. [7] Haidar N., et al. New consumer-dependent energy management system to reduce cost and carbon impact in smart buildings. Sustainable Cities and Society 2018:39:740–750. https://doi.org/10.1016/j.scs.2017.11.03310.1016/j.scs.2017.11.033
  8. [8] Abokersh M. H., et al. A real-time diagnostic tool for evaluating the thermal performance of nearly zero energy buildings. Applied Energy 2021:281:116091. https://doi.org/10.1016/j.apenergy.2020.11609110.1016/j.apenergy.2020.116091
  9. [9] Gärtner J. A., Massa Gray F., Auer T. Assessment of the impact of HVAC system configuration and control zoning on thermal comfort and energy efficiency in flexible office spaces. Energy and Buildings 2020:212:109785. https://doi.org/10.1016/j.enbuild.2020.10978510.1016/j.enbuild.2020.109785
  10. [10] Cabinet of Ministers Republic of Latvia. Ministru kabineta noteikumi Nr. 222 - Ēku energoefektivitātes aprēķina metodes un ēku energosertifikācijas noteikumi (Regulations of the Cabinet of Ministers No. 222 – Methods for calculating the energy performance of buildings and rules for the energy certification of buildings). Latvijas Vēstnesis 2021:72. (in Latvian)
  11. [11] Directive (EU) 2018/844 of the European Parliament and of the Council of 30 May 2018 amending Directive 2010/31/EU on the energy performance of buildings and Directive 2012/27/EU on energy efficiency (Text with EEA relevance). Official Journal of European Union 2018:L 156/75.
  12. [12] D’Agostino D., Parker D. A framework for the cost-optimal design of nearly zero energy buildings (NZEBs) in representative climates across Europe. Energy 2018:149:814–829. https://doi.org/10.1016/j.energy.2018.02.02010.1016/j.energy.2018.02.020
  13. [13] Lu Y., et al. Robust optimal design of renewable energy system in nearly/net zero energy buildings under uncertainties. Applied Energy 2017:187:62–71. https://doi.org/10.1016/j.apenergy.2016.11.04210.1016/j.apenergy.2016.11.042
  14. [14] Schuetz P., et al. Automated modelling of residential buildings and heating systems based on smart grid monitoring data. Energy and Buildings 2020:229:110453. https://doi.org/10.1016/j.enbuild.2020.11045310.1016/j.enbuild.2020.110453
  15. [15] Li W., et al. Stepwise calibration for residential building thermal performance model using hourly heat consumption data. Energy and Buildings 2018:181:10–25. https://doi.org/10.1016/j.enbuild.2018.10.00110.1016/j.enbuild.2018.10.001
  16. [16] Sakiyama N. R. M., et al. Dataset of the EnergyPlus model used in the assessment of natural ventilation potential through building simulation. Data in Brief 2021:34:106753. https://doi.org/10.1016/j.dib.2021.10675310.1016/j.dib.2021.106753784339733537372
  17. [17] Mazzeo D., et al. EnergyPlus, IDA ICE and TRNSYS predictive simulation accuracy for building thermal behaviour evaluation by using an experimental campaign in solar test boxes with and without a PCM module. Energy and Buildings 2020:212:109812. https://doi.org/10.1016/j.enbuild.2020.10981210.1016/j.enbuild.2020.109812
  18. [18] Evangelisti L., et al. In situ thermal characterization of existing buildings aiming at NZEB standard: A methodological approach. Development in the Built Environment 2020:2:100008. https://doi.org/10.1016/j.dibe.2020.10000810.1016/j.dibe.2020.100008
  19. [19] Dias Pereira L., et al. Teaching and researching the indoor environment: From traditional experimental techniques towards web-enabled practices. Sustainable Cities and Society 2016:26:543–554. https://doi.org/10.1016/j.scs.2016.03.00810.1016/j.scs.2016.03.008
  20. [20] Etxebarria M., et al. Relationship between energy demand, indoor thermal behaviour and temperature-related health risk concerning passive energy refurbishment interventions. Environmental and Climate Technology 2020:24:348–363. https://doi.org/10.2478/rtuect-2020-007810.2478/rtuect-2020-0078
  21. [21] Guo S., et al. A novel approach for selecting typical hot-year (THY) weather data. Applied Energy 2019:242:1634–1648. https://doi.org/10.1016/j.apenergy.2019.03.06510.1016/j.apenergy.2019.03.065
  22. [22] Moazami A., et al. Impacts of future weather data typology on building energy performance – Investigating long-term patterns of climate change and extreme weather conditions. Applied Energy 2019:238:696–720. https://doi.org/10.1016/j.apenergy.2019.01.08510.1016/j.apenergy.2019.01.085
  23. [23] Lombardo W., et al. A CCHP system based on ORC cogenerator and adsorption chiller experimental prototypes: Energy and economic analysis for NZEB applications. Applied Thermal Engineering 2021:183(2):116119. doi.org/10.1016/j.applthermaleng.2020.11611910.1016/j.applthermaleng.2020.116119
  24. [24] Ciardiello A., et al. Multi-objective approach to the optimization of shape and envelope in building energy design. Applied Energy 2020:280:115984. https://doi.org/10.1016/j.apenergy.2020.11598410.1016/j.apenergy.2020.115984
  25. [25] Rusovs D., Jaundālders S., Stanka P. Design and application of sensitive thermal energy storage from concrete. IOP Conference Series: Materials Science and Engineering 2019:660:012077. https://doi.org/10.1088/1757-899X/660/1/01207710.1088/1757-899X/660/1/012077
  26. [26] Al Dakheel J., et al. Smart buildings features and key performance indicators: A review. Sustainable Cities and Society 2020:61:102328. https://doi.org/10.1016/j.scs.2020.10232810.1016/j.scs.2020.102328
  27. [27] Zhang D., Shah N., Papageorgiou L. G.Efficient energy consumption and operation management in a smart building with microgrid. Energy Conversion and Management 2013:74:209–222. https://doi.org/10.1016/j.enconman.2013.04.03810.1016/j.enconman.2013.04.038
  28. [28] Travesi J., Maxwell G., Klaassen C. Empirical Validation of Iowa Energy Resource Station Building Energy Analysis Simulation Models. Paris: IEA, 2001.
  29. [29] Kropf S., Zweifel G. Validation of the Building Simulation Program IDA-ICE According to CEN 13791„Thermal Performance of Buildings – Calculation of Internal Temperatures of a Room in Summer Without Mechanical Cooling - General Criteria and Validation Procedures. Horw: Hochschule Luzern – Technik & Architektur, 2001.
  30. [30] Cabinet of Ministers Republic of Latvia. Ministru kabineta noteikumi Nr.310 – Noteikumi par Latvijas būvnormatīvu LBN 231-15 ‘Dzīvojamo un publisko ēku apkure un ventilācija’ (Cabinet Regulation No. 310 - Regulations on the Latvian Construction Standard LBN 231-15 ‘Heating and Ventilation of Residential and Public Buildings’). Latvijas Vēstnesis 2015:119. (in Latvian)
  31. [31] The Engineering ToolBox. Metabolic Heat Gain from Persons [Online]. [Accessed 24.08.2021]. Available: https://www.engineeringtoolbox.com/metabolic-heat-persons-d_706.html
  32. [32] JSC Augstsprieguma tikls. In Brief [Online]. [Accessed 11.11.2021]. Available: https://ast.lv/en/content/brief
  33. [33] LĪGUMS jaudas rezervju nodrošināšana Latvijas Republikas elektroenerģijas sistēmas drošumam (Agreement on provision of capacity reserves for the security of the electricity system of the Republic of Latvia). [Online]. [Accessed
  34. 20.08.2021]. Available: https://www.ast.lv/sites/default/files/purchase_contracts/JAUDASREZERVES_Ligums_Latvenergo_publicesanai_2018.pdf (in Latvian)
  35. [34] Saeima. Electricity Market Law. Latvijas Vēstnesis 2005:82.
  36. [35] JSC Augstsprieguma tikls Balance responsibility and imbalance [Online]. [Accessed 20.08.2021]. Available: https://ast.lv/en/content/balance-responsibility-and-imbalance
  37. [36] Microgrids – What Are They and How Do They Work? [Online]. [Accessed 24.08.2021]. Available: https://nsci.ca/2019/11/08/microgrids-what-are-they-and-how-do-they-work/
DOI: https://doi.org/10.2478/rtuect-2022-0009 | Journal eISSN: 2255-8837 | Journal ISSN: 1691-5208
Language: English
Page range: 98 - 114
Published on: Mar 3, 2022
Published by: Riga Technical University
In partnership with: Paradigm Publishing Services
Publication frequency: 2 times per year

© 2022 Andris Krumins, Kristina Lebedeva, Antra Tamane, Renars Millers, published by Riga Technical University
This work is licensed under the Creative Commons Attribution 4.0 License.