Have a personal or library account? Click to login
Performance Analysis of An Automated Biodiesel Processor Cover

Performance Analysis of An Automated Biodiesel Processor

Open Access
|Feb 2022

References

  1. [1] Sajjadi B., Raman A. A. A., Arandiyan H. A comprehensive review on properties of edible and non-edible vegetable oil-based biodiesel: Composition, specifications, and prediction models. Renewable and Sustainable Energy Reviews 2016:63:62–92. https://doi.org/10.1016/j.rser.2016.05.03510.1016/j.rser.2016.05.035
  2. [2] Ogunkunle O., Ahmed N. A. A review of global current scenario of biodiesel adoption and combustion in vehicular diesel engines. Energy Reports 2019:5:1560–1579. https://doi.org/10.1016/j.egyr.2019.10.02810.1016/j.egyr.2019.10.028
  3. [3] Ganesan D., Rajendran A., Thangavelu V. An overview on the recent advances in the transesterification of vegetable oils for biodiesel production using chemical and biocatalysts. Reviews in Environmental Science and Bio/Technology 2009:8:367. https://doi.org/10.1007/s11157-009-9176-910.1007/s11157-009-9176-9
  4. [4] Schuchardt U., Sercheli R., Vargas R. M. Transesterification of vegetable oils: a review. Journal of the Brazilian Chemical Society 1998:9(1):199–210.10.1590/S0103-50531998000300002
  5. [5] Sukasem N., Manophan S. The development of biodiesel production from vegetable oils by using different proportions of lime catalyst and sodium hydroxide. Energy Procedia 2017:138:991–997. https://doi.org/10.1016/j.egypro.2017.10.10810.1016/j.egypro.2017.10.108
  6. [6] Yadav C., et al. Thermo-analytical characterizations of biodiesel produced from edible and non-edible oils. Fuel Processing Technology 2017:167:395–403. https://doi.org/10.1016/j.fuproc.2017.07.02610.1016/j.fuproc.2017.07.026
  7. [7] Tiwari A., Rajesh V. M., Yadav S. Biodiesel production in micro-reactors: A review. Energy for Sustainable Development 2018:43:143–161. https://doi.org/10.1016/j.esd.2018.01.00210.1016/j.esd.2018.01.002
  8. [8] Diaz M. S., Espinosa S., Brignole E. A. Model-Based Cost Minimization in Non-Catalytic Biodiesel Production Plants. Energy and Fuels 2009:23:5588–5593. https://doi.org/10.1021/ef900338k10.1021/ef900338k
  9. [9] Narasimhan V., et al. Process Incentives by the Intensification of a Conventional Biodiesel Plant. Procedia Technology 2016:24:661–668. https://doi.org/10.1016/j.protcy.2016.05.17710.1016/j.protcy.2016.05.177
  10. [10] Daniyan O., et al. Performance Evaluation of a Smart Multi feedstock Biodiesel Plant. Procedia Manufacturing 2019:35:1117–1122. https://doi.org/10.1016/j.promfg.2019.06.06510.1016/j.promfg.2019.06.065
  11. [11] Highina B. K., Bugaje I. M., Umar B. Biodiesel production from Jatropha caucus oil in a batch reactor using zinc oxide as catalyst. Journal of Petroleum Technology and Alternative Fuels 2011:2(9):146–149.
  12. [12] Leevijit T., et al. Design and test of a continuous reactor for palm oil transesterification. S J Sci Tech 2006:28(4):791–802.
  13. [13] Azhari I., et al. Preliminary design of oscillatory flow biodiesel. Reactor for continuous biodiesel production from jatropha triglycerides. Journal of Engineering Science and Technology 2008:3(2):138–145.
  14. [14] Abbaszaadeh A., et al. Design, Fabrication, and Evaluation of a Novel Biodiesel Processor System. Int J Ren En Tech Res 2013:2(12):249–255.
  15. [15] Zhang Y., et al. Biodiesel production from waste cooking oil: 1. Process design and technological assessment. Bioresource Technology 2003:89:1–16. https://doi.org/10.1016/S0960-8524(03)00040-310.1016/S0960-8524(03)00040-312676496
  16. [16] Thi Tuong V. T., et al. Green biodiesel production from waste cooking oil using an environmentally benign acid catalyst. Waste Management 2016:52:367–374. https://doi.org/10.1016/j.wasman.2016.03.05310.1016/j.wasman.2016.03.05327053375
  17. [17] Ullah Z., et al. Preparation and kinetics study of biodiesel production from waste cooking oil using new functionalized ionic liquids as catalysts. Renewable Energy 2017:114:755–765. https://doi.org/10.1016/j.renene.2017.07.08510.1016/j.renene.2017.07.085
  18. [18] Joshi S., et al. Intensification of biodiesel production from soybean oil and waste cooking oil in the presence of heterogeneous catalyst using high speed homogenizer. Ultrasonics Sonochemistry 2017:39:645–653. https://doi.org/10.1016/j.ultsonch.2017.05.02910.1016/j.ultsonch.2017.05.02928732989
  19. [19] Tan Y. H., et al. Waste Ostrich and Chicken-Eggshells as Heterogeneous Base Catalyst for Biodiesel Production from Used Cooking Oil: Catalyst Characterization and Biodiesel Yield Performance. Applied Energy 2015:160:58–70. https://doi.org/10.1016/j.apenergy.2015.09.02310.1016/j.apenergy.2015.09.023
  20. [20] Yusuff A. S., et al. Development and Characterization of a Composite Anthill- Chicken Eggshell Catalyst for Biodiesel Production from Waste Frying Oil. International Journal of Technology 2018:9(1):110–119. https://doi.org/10.14716/ijtech.v9i1.116610.14716/ijtech.v9i1.1166
  21. [21] Al-Zuhair S., Dowaidar A., Kamal H. Dynamic Modelling of Biodiesel Production from Simulated Waste Cooking Oil Using Immobilized Lipase. Biochemical Engineering Journal 2010:44(2–3):256–262. https://doi.org/10.1016/j.bej.2009.01.00310.1016/j.bej.2009.01.003
  22. [22] Nezhad A. H., Hashemi S. J., Tabatabaie S. R. Biodiesel production from waste cooking oil using a stirred batch reactor. J Nov App Sci 2014:3(10):1125–1130.
  23. [23] Samad A. T., et al. Design of portable biodiesel plant from waste cooking oil. Energy Procedia 2018:153:263–268. https://doi.org/10.1016/j.egypro.2018.10.06210.1016/j.egypro.2018.10.062
  24. [24] Drive Clean Colorado. Alternative Fuels. Biodiesel [Online]. [Accessed 16.06.2020]. Available: https://drivecleancolorado.org/resources/alternative-fuels#/find/nearest
  25. [25] Alleman L. T., et al. Biodiesel Handling and Use Guide (Fifth Edition). United States: CC, 2016.10.2172/1332064
  26. [26] American Society for Testing and Materials. ASTM International. [Online]. [Accessed: 16.06.2020]. Available: https://www.astm.org/d7467-20a.html
  27. [27] Tiwari A., Rajesh V., Yadav S. Biodiesel production in micro-reactors: A review. Energy for Sustainable Development 2018:43:143–161. https://doi.org/10.1016/j.esd.2018.01.00210.1016/j.esd.2018.01.002
  28. [28] Joshi S., et al. Intensification of biodiesel production from soybean oil and waste cooking oil in the presence of heterogeneous catalyst using high speed homogenizer. Ultrasonics Sonochemistry 2017:39:645–653. https://doi.org/10.1016/j.ultsonch.2017.05.02910.1016/j.ultsonch.2017.05.02928732989
  29. [29] Naveen S., et al. Novel Solar Parabolic Trough Collector cum Reactor for the Production of Biodiesel from Waste Cooking Oil using Calcium Oxide catalyst derived from seashells waste. Chemical Engineering and Processing – Process Intensification 2020:157:108145. https://doi.org/10.1016/j.cep.2020.10814510.1016/j.cep.2020.108145
  30. [30] García-Martín J. F., et al. Biodiesel production from waste cooking oil in an oscillatory flow reactor. Performance as a fuel on a TDI diesel engine. Renewable Energy 2018:125:546–556. https://doi.org/10.1016/j.renene.2018.03.00210.1016/j.renene.2018.03.002
  31. [31] Panchal B., et al. Optimization of soybean oil transesterification using an ionic liquid and methanol for biodiesel synthesis. Energy Reports 2019:6(7):20–27. https://doi.org/10.1016/j.egyr.2019.11.02810.1016/j.egyr.2019.11.028
  32. [32] Bencheikh K., et al. Fuels properties, characterizations and engine and emission performance analyses of ternary waste cooking oil biodiesel–diesel–propanol blends. Sustainable Energy Technologies and Assessments 2019:35:321–334. https://doi.org/10.1016/j.seta.2019.08.00710.1016/j.seta.2019.08.007
  33. [33] Madiwale S., Bhojwani V. An Overview on Production, Properties, Performance and Emission Analysis of Blends of Biodiesel. Procedia Technology 2016:25:963–973. https://doi.org/10.1016/j.protcy.2016.08.18910.1016/j.protcy.2016.08.189
  34. [34] Szabados G., Bereczky Á. Experimental investigation of physicochemical properties of diesel, Biodiesel and TBKbiodiesel fuels and combustion and emission analysis in CI internal combustion engine. Renewable Energy 2018:121:568–578. https://doi.org/10.1016/j.renene.2018.01.04810.1016/j.renene.2018.01.048
  35. [35] Madiwale S., Karthikeyan A., Bhojwani V. Properties investigation and performance analysis of a diesel engine fuelled with Jatropha, Soybean, Palm and Cottonseed Biodiesel using Ethanol as an additive. Materials Today: Proceedings 2018:5(1):657–664. https://doi.org/10.1016/j.matpr.2017.11.13010.1016/j.matpr.2017.11.130
  36. [36] Cavalheiro L. F., et al. Characterization of residues and evaluation of the physico chemical properties of soybean biodiesel and Biodiesel: Diesel blends in different storage conditions. Renewable Energy 2020:151:454–462. https://doi.org/10.1016/j.renene.2019.11.03910.1016/j.renene.2019.11.039
  37. [37] Zhang C., et al. Assessment of biodiesel plant waste heat recovery with respect to economics and CO2 emission. Energy Procedia 2017:142:1100–1105. https://doi.org/10.1016/j.egypro.2017.12.36310.1016/j.egypro.2017.12.363
  38. [38] Muthuraman S., Sivaraj M., Rajkumar S. Performance analysis of compression ignition (CI) engine using Biodiesel. Mat Tod: Proc 2020:37(P2):1422–1426. https://doi.org/10.1016/j.matpr.2020.06.59810.1016/j.matpr.2020.06.598
  39. [39] Jagtap S. P., Pawar A. N., Lahane S. Improving the usability of biodiesel blend in low heat rejection diesel engine through combustion, performance and emission analysis. Renewable Energy 2020:155:628–644. https://doi.org/10.1016/j.renene.2020.03.11510.1016/j.renene.2020.03.115
  40. [40] Krishania N., et al. Investigations of spirulina, waste cooking and animal fats blended biodiesel fuel on auto-ignition diesel engine performance, emission characteristics. Fuel 2020:276:118123. https://doi.org/10.1016/j.fuel.2020.11812310.1016/j.fuel.2020.118123
  41. [41] Mirbagheri S. A., Ardebili S. M., Kiani M. K. Modeling of the engine performance and exhaust emissions characteristics of a single-cylinder diesel using nano-biochar added into ethanol-biodiesel-diesel blends. Fuel 2020:278:118238. https://doi.org/10.1016/j.fuel.2020.11823810.1016/j.fuel.2020.118238
  42. [42] Simsek S., Uslu S. Comparative evaluation of the influence of waste vegetable oil and waste animal oil-based biodiesel on diesel engine performance and emissions. Fuel 2020:280:118613. https://doi.org/10.1016/j.fuel.2020.11861310.1016/j.fuel.2020.118613
  43. [43] Ali M. A., et al. Biodiesel synthesized from waste cooking oil in a continuous microwave assisted reactor reduced PM and NOx emissions. Environmental Research 2020:185:109452. https://doi.org/10.1016/j.envres.2020.10945210.1016/j.envres.2020.10945232259725
DOI: https://doi.org/10.2478/rtuect-2022-0008 | Journal eISSN: 2255-8837 | Journal ISSN: 1691-5208
Language: English
Page range: 84 - 97
Published on: Feb 27, 2022
Published by: Riga Technical University
In partnership with: Paradigm Publishing Services
Publication frequency: 2 times per year

© 2022 Adib Bin Rashid, Md. Faisal Kader, published by Riga Technical University
This work is licensed under the Creative Commons Attribution 4.0 License.