[1] Antonelli M., Benzoni S., Bergna G., Bernardi M., Bertanza G., Cantoni B., Delli Compagni R., Gugliandolo M.C., Malpei F., Mezzanotte V., Pannuzzo B., Porro E. Contamination and removal of emerging micropollutants in wastewater and in water intended for human consumption. (Contaminazione e rimozione di microinquinanti emergenti in acque reflue e in acque destinate al consumo umano). In: GdL-MIE. Inquinanti Emergenti, Tartari G., Bergna G., Lietti M., Rizzo A., Lazzari F. e Brioschi C. (eds). Lombardy Energy Cleantech Cluster, Milano: 2020. (In Italian).
[2] Gusmaroli L., Mendoza E., Petrovic M., Buttiglieri G. How do WWTPs operational parameters affect the removal rates of EU Watch list compounds? Science of the Total Environment 2020:714:136773. https://doi.org//10.1016/j.scitotenv.2020.13677310.1016/j.scitotenv.2020.13677332018966
[3] Rizzo L., Malato S., Antakyali D., Beretsou V. G., Đolić M. B., Gernjak W., Heath E., Ivancev-Tumbas I., Karaolia P., Ribeiro A. R. L., Mascolo G., McArdell C. S., Schaar H., Silva A. M. T., Fatta-Kassinos D. Consolidated vs new advanced treatment methods for the removal of contaminants of emerging concern from urban wastewater. Science of The Total Environment 2019:655:986–1008. https://doi.org//10.1016/j.scitotenv.2018.11.26510.1016/j.scitotenv.2018.11.26530577146
[4] Mu R., Jia Y., Ma G., Liu L., Hao K., Qi F., Shao Y. Advances in the use of microalgal–bacterial consortia for wastewater treatment: Community structures, interactions, economic resource reclamation, and study techniques. Water Environment Research 2021:93(8):1217–1230. https://doi.org//10.1002/wer.149610.1002/wer.149633305497
[6] Abargues M. R., Giménez J. B., Ferrer J., Bouzas A., Seco A. Endocrine disruptor compounds removal in wastewater using microalgae: Degradation kinetics assessment. Chemical Engineering Journal 2018:334:313–321. https://doi.org//10.1016/j.cej.2017.09.18710.1016/j.cej.2017.09.187
[8] Hom-Diaz A., Llorca M., Rodriguez-Mozaz S., Vicent T., Barcelo D., Blanquez P. Microalgae cultivation on wastewater digestate: beta-estradiol and 17alpha-ethynylestradiol degradation and transformation products identification. Journal of Environmental Management 2015:155:106–113. https://doi.org/10.1016/j.jenvman.2015.03.00310.1016/j.jenvman.2015.03.00325785785
[10] Matamoros V., Gutiérrez R., Ferrer I., García J., Bayona J. M. Capability of microalgae-based wastewater treatment systems to remove emerging organic contaminants: A pilot-scale study. Journal of Hazardous Materials 2015:288:34–42. https://doi.org//10.1016/j.jhazmat.2015.02.00210.1016/j.jhazmat.2015.02.00225682515
[11] Mantovani M., Marazzi F., Fornaroli R., Bellucci M., Ficara E., Mezzanotte V. Outdoor pilot-scale raceway as a microalgae-bacteria sidestream treatment in a WWTP. Science of the Total Environment 2020:710. https://doi.org//10.1016/j.scitotenv.2019.13558310.1016/j.scitotenv.2019.13558331785903
[12] Marazzi F., Bellucci M., Rossi S., Fornaroli R., Ficara E., Mezzanotte V. Outdoor pilot trial integrating a sidestream microalgae process for the treatment of centrate under non optimal climate conditions. Algal Research 2019:39:101430. https://doi.org//10.1016/j.algal.2019.10143010.1016/j.algal.2019.101430
[13] Pizzera A., Scaglione D., Bellucci M., Marazzi F., Mezzanotte V., Parati K., Ficara E. Digestate treatment with algae-bacteria consortia: a field pilot-scale experimentation in a sub-optimal climate area. Bioresource Technology 2019:274:232–243. https://doi.org//10.1016/j.biortech.2018.11.06710.1016/j.biortech.2018.11.06730513411
[14] Golovko O., Örn S., Sörengård M., Frieberg K., Nassazzi W., Yin Lai F., Ahrens L. Occurrence and removal of chemicals of emerging concern in wastewater treatment plants and their impact on receiving water systems. Science of The Total Environment 2021:754:142122. https://doi.org/10.1016/j.scitotenv.2020.14212210.1016/j.scitotenv.2020.14212232920399
[15] Ofrydopoulou A., Nannou C., Evgenidou E., Christodoulou A., Lambropoulou D. Assessment of a wide array of organic micropollutants of emerging concern in wastewater treatment plants in Greece: Occurrence, removals, mass loading and potential risks. Science of The Total Environment 2022:802:149860. https://doi.org/10.1016/j.scitotenv.2021.14986010.1016/j.scitotenv.2021.14986034525693
[16] Krzeminski P., Tomei M. C., Karaolia P., Langenhoff A., Almeida C. M. R., Felis E., Gritten F., Andersen H. R., Fernandes T., Manaia C. M., Rizzo L., Fatta-Kassinos D. Performance of secondary wastewater treatment methods for the removal of contaminants of emerging concern implicated in crop uptake and antibiotic resistance spread: A review. Science of The Total Environment 2019:648:1052–1081. https://doi.org//10.1016/j.scitotenv.2018.08.13010.1016/j.scitotenv.2018.08.13030340253
[17] Guillossou R., Le Roux J., Mailler R., Vulliet E., Morlay C., Nauleau F., Gasperi J., Rocher V. Organic micropollutants in a large wastewater treatment plant: What are the benefits of an advanced treatment by activated carbon adsorption in comparison to conventional treatment? Chemosphere 2019:218:1050–1060. https://doi.org//10.1016/j.chemosphere.2018.11.18210.1016/j.chemosphere.2018.11.18230609484
[18] Boix C., Ibáñez M., Sancho J. V., Parsons J. R., deVoogt P., Hernández F. Biotransformation of pharmaceuticals in surface water and during waste water treatment: Identification and occurrence of transformation products Journal of Hazardous Materials 2016:302:175–187. https://doi.org//10.1016/j.jhazmat.2015.09.05310.1016/j.jhazmat.2015.09.05326476304
[19] Blair B., Nikolaus A., Hedman C., Klaper R., Grundl T. 2015. Evaluating the degradation, sorption, and negative mass balances of pharmaceuticals and personal care products during wastewater treatment. Chemosphere 2015:134:395–401. https://doi.org//10.1016/j.chemosphere.2015.04.07810.1016/j.chemosphere.2015.04.07825985097
[20] Ismail M.M., Essam T. M., Ragab Y. M., El-Sayed A.E–K.B., Mourad F. E. Remediation of a mixture of analgesics in a stirred-tank photobioreactor using microalgal-bacterial consortium coupled with attempt to valorise the harvested biomass. Bioresource Technology 2017:232:364–371. https://doi.org/10.1016/j.biortech.2017.02.06210.1016/j.biortech.2017.02.06228254731
[21] Hom-Diaz A., Jaen-Gil A., Bello-Laserna I., Rodríguez-Mozaz S., Vicent T., Barceló D., Blánquez P. Performance of a microalgal photobioreactor treating toilet wastewater: pharmaceutically active compound removal and biomass harvesting. Science of The Total Environment 2017:592:1–11. https://doi.org/10.1016/j.scitotenv.2017.02.22410.1016/j.scitotenv.2017.02.22428292669
[22] Escudero A., Hunter C., Roberts J., Helwig K., Pahl O. Pharmaceuticals removal and nutrient recovery from wastewaters by Chlamydomonas acidophila. Biochemical Engineering Journal 2020:156:107517. https://doi.org/10.1016/j.bej.2020.10751710.1016/j.bej.2020.107517
[24] Dimitrov S. D., Dermen I. A., Dimitrova N. H., Vasilev K. G., Schultz T. W., Mekenyan, O. G. Mechanistic relationship between biodegradation and bioaccumulation. Practical outcomes. Regulatory Toxicology and Pharmacology 2019:107:104411. https://doi.org/10.1016/j.yrtph.2019.10441110.1016/j.yrtph.2019.10441131226393
[25] Chandrasekhar K., Raj T., Ramanaiah S. V., Gopalakrishnan K., Rajesh Banu J., Varjani S., Sharma P., Pandey A., Kumar S., Kim S.-H. Algae biorefinery: a promising approach to promote microalgae industry and waste utilization. Journal of Biotechnology 2022:345:1–16. https://doi.org/10.1016/j.jbiotec.2021.12.00810.1016/j.jbiotec.2021.12.00834954289