References
- [1] Vea E. B., Romeo D., Thomsen M. Biowaste Valorisation in a Future Circular Bioeconomy. Procedia CIRP 2018:69:591–596. https://doi,org/10.1016/J.PROCIR.2017.11.06210.1016/j.procir.2017.11.062
- [2] European Commission. Communication From The Commission To The European Parliament, The European Council, The Council, The European Economic And Social Committee And The Committee Of The Regions The European Green Deal. Brussels: EC, 2019.
- [3] Mikova N., Eichhammer W., Pfluger B. Low-carbon energy scenarios 2050 in north-west European countries: Towards a more harmonised approach to achieve the EU targets. Energy Policy 2019:130(C):448–460. https://doi.org/10.1016/J.ENPOL.2019.03.04710.1016/j.enpol.2019.03.047
- [4] Silveira S., et al. Opportunities for bioenergy in the Baltic Sea Region. Energy Procedia 2017:128:157–164. https://doi.org/10.1016/J.EGYPRO.2017.09.03610.1016/j.egypro.2017.09.036
- [5] Jonsson P. R., et al. Report on the importance of connectivity as a driver of biodiversity (populations, species, communities, habitats). BIO-C3 Deliv. D3.3. EU Bonusproject BIO -C3. Kiel: BIO-C3, 2016. https://doi.org/10.3289/BIO-C3_D3.3
- [6] Bell J., et al. EU ambition to build the world’s leading bioeconomy—Uncertain times demand innovative and sustainable solutions. New Biotechnol. 2018:40:25–30. https://doi.org/10.1016/J.NBT.2017.06.01010.1016/j.nbt.2017.06.01028676417
- [7] European Commission. Biomass production, supply, uses and flows in the European Union. Luxembourg: Publication office of the European Union, 2018.
- [8] Kamm B., Kamm M. Principles of biorefineries. Appl. Microbiol. Biotechnol. 2004:64(2):137–145. https://doi.org/10.1007/S00253-003-1537-710.1007/s00253-003-1537-714749903
- [9] Sanz-Hernández A., Esteban E., Garrido P. Transition to a bioeconomy: Perspectives from social sciences. J. Clean. Prod. 2019:224:107–119. https://doi.org/10.1016/J.JCLEPRO.2019.03.16810.1016/j.jclepro.2019.03.168
- [10] Fava F., et al. Biowaste biorefinery in Europe: opportunities and research & development needs. New Biotechnol. 2015:32(1):100–108. https://doi.org/10.1016/J.NBT.2013.11.00310.1016/j.nbt.2013.11.00324284045
- [11] Zihare L., et al. Bioeconomy triple factor nexus through indicator analysis. New Biotechnol. 2021:61:57–68. https://doi.org/10.1016/J.NBT.2020.11.00810.1016/j.nbt.2020.11.00833220518
- [12] Heimann T. Bioeconomy and SDGs: Does the Bioeconomy Support the Achievement of the SDGs? Earth’s Futur. 2019:7(1):43–57. https://doi.org/10.1029/2018EF00101410.1029/2018EF001014
- [13] de Albuquerque T. L., et al. Biotechnological Strategies for the Lignin-Based Biorefinery Valorization. Ref. Modul. Chem. Mol. Sci. Chem. Eng. 2019. https://doi.org/10.1016/B978-0-12-409547-2.14570-610.1016/B978-0-12-409547-2.14570-6
- [14] Sauvée L., Viaggi D. Biorefineries in the bio-based economy: opportunities and challenges for economic research. Bio-based Appl. Econ. 2016:5(1):1–4. https://doi.org/10.13128/BAE-18336
- [15] Carioca J. O. B., Leal M. R. L. V. Ethanol Production from Sugar-Based Feedstocks. In Murray Moo-Young (eds) Comprehensive Biotechnology. 2nd Ed. Academic Press 2011:27–35. https://doi.org/10.1016/B978-0-08-088504-9.00184-710.1016/B978-0-08-088504-9.00184-7
- [16] Yu S., et al. Nanocellulose from various biomass wastes: Its preparation and potential usages towards the high value-added products. Environ. Sci. Ecotechnology 2021:5:100077. https://doi.org/10.1016/J.ESE.2020.10007710.1016/j.ese.2020.100077
- [17] Velvizhi G., et al. Integrated biorefinery processes for conversion of lignocellulosic biomass to value added materials: Paving a path towards circular economy. Bioresour. Technol. 2022:343:126151. https://doi.org/10.1016/J.BIORTECH.2021.12615110.1016/j.biortech.2021.126151
- [18] Lu H., et al. Bioprospecting microbial hosts to valorize lignocellulose biomass – Environmental perspectives and value-added bioproducts. Chemosphere 2021. In Press. https://doi.org/10.1016/J.CHEMOSPHERE.2021.13257410.1016/j.chemosphere.2021.132574
- [19] Tortorella M. M., et al. A Methodological Integrated Approach to Analyse Climate Change Effects in Agri-Food Sector: The TIMES Water-Energy-Food Module. Int. J. Environ. Res. Public Heal. 2020:17(21):7703. https://doi.org/10.3390/IJERPH1721770310.3390/ijerph17217703
- [20] Mercure J. F., et al. Environmental impact assessment for climate change policy with the simulation-based integrated assessment model E3ME-FTT-GENIE. Energy Strateg. Rev. 2018:20:195–208. https://doi.org/10.1016/J.ESR.2018.03.00310.1016/j.esr.2018.03.003
- [21] Barker T. The effects on competitiveness of coordinated versus unilateral fiscal policies reducing GHG emissions in the EU: an assessment of a 10% reduction by 2010 using the E3ME model. Energy Policy 1998:26(14):1083–1098. https://doi.org/10.1016/S0301-4215(98)00053-610.1016/S0301-4215(98)00053-6
- [22] Novero A. U., et al. The use of light detection and ranging (LiDAR) technology and GIS in the assessment and mapping of bioresources in Davao Region, Mindanao Island, Philippines. Remote Sens. Appl. Soc. Environ. 2019:13:1–11. https://doi.org/10.1016/J.RSASE.2018.10.01110.1016/j.rsase.2018.10.011
- [23] Turner R., et al. Estimation of soil surface roughness of agricultural soils using airborne LiDAR. Remote Sens. Environ. 2014:140:107–117. https://doi.org/10.1016/J.RSE.2013.08.03010.1016/j.rse.2013.08.030
- [24] Partridge M. D., Rickman D. S. Computable General Equilibrium (CGE) Modelling for Regional Economic Development Analysis. 2008:44(10):1311–1328. https://doi.org/10.1080/0034340070165423610.1080/00343400701654236
- [25] Fouré J., Guimbard H., Monjon S. Border carbon adjustment and trade retaliation: What would be the cost for the European Union? Energy Econ. 2016:54:349–362. https://doi.org/10.1016/j.eneco.2015.11.02110.1016/j.eneco.2015.11.021
- [26] Malins C., Plevin R., Edwards R. How robust are reductions in modeled estimates from GTAP-BIO of the indirect land use change induced by conventional biofuels? J. Clean. Prod. 2020:258:120716. https://doi.org/10.1016/j.jclepro.2020.12071610.1016/j.jclepro.2020.120716
- [27] Brinkman M., et al. The distribution of food security impacts of biofuels, a Ghana case study. Biomass and Bioenergy 2020:141:105695. https://doi.org/10.1016/j.biombioe.2020.10569510.1016/j.biombioe.2020.105695
- [28] Komarek A. M., et al. Income, consumer preferences, and the future of livestock-derived food demand. Glob. Environ. Chang. 2021:70:102343. https://doi.org/10.1016/J.GLOENVCHA.2021.10234310.1016/j.gloenvcha.2021.102343761205734857999
- [29] Laborde D., et al. Assessment framework and operational definitions for long-term scenarios. FOODSECURE Work. Pap. Hague: WUR, 2013.
- [30] Havlík P., et al. Climate change mitigation through livestock system transitions. Proc. Natl. Acad. Sci. U. S. A. 2014:111(10):3709–3714. https://doi.org/10.1073/PNAS.130804411110.1073/pnas.1308044111395614324567375
- [31] Grosky W. I., Stanchev P. L. An Image Data Model. In Laurini R. (eds) Advances in Visual Information Systems. VISUAL 2000. Lecture Notes in Computer Science, vol. 1929. Springer, 2000. https://doi.org/10.1007/3-540-40053-2_210.1007/3-540-40053-2_2
- [32] Gibon T., et al. A Methodology for Integrated, Multiregional Life Cycle Assessment Scenarios under Large-Scale Technological Change. Environ. Sci. Technol. 2015:49(18):11218–11226. https://doi.org/10.1021/ACS.EST.5B0155810.1021/acs.est.5b0155826308384
- [33] Pauliuk S., Hertwich E. G. Prospective Models of Society’s Future Metabolism: What Industrial Ecology Has to Contribute. In Clift R., Druckman A. (eds) Taking Stock of Industrial Ecology. Springer, 2016. https://doi.org/10.1007/978-3-319-20571-7_210.1007/978-3-319-20571-7_2
- [34] Pavičević M., et al. The potential of sector coupling in future European energy systems: Soft linking between the Dispa-SET and JRC-EU-TIMES models. Applied Energy 2020:267:115100. https://doi.org/10.1016/J.APENERGY.2020.11510010.1016/j.apenergy.2020.115100
- [35] Perpiña Castillo C., et al. Modelling agricultural land abandonment in a fine spatial resolution multi-level land-use model: An application for the EU. Environ. Model. Softw. 2021:136:104946. https://doi.org/10.1016/J.ENVSOFT.2020.10494610.1016/j.envsoft.2020.104946789368733664629
- [36] Krzemień J. Application of Markal Model Generator in Optimizing Energy Systems. J. Sustain. Min. 2013:12(2):35–39. https://doi.org/10.7424/JSM13020510.7424/jsm130205
- [37] Perissi I., et al. Cross-Validation of the MEDEAS Energy-Economy-Environment Model with the Integrated MARKAL-EFOM System (TIMES) and the Long-Range Energy Alternatives Planning System (LEAP). Sustain. 2021:13(4):1967. https://doi.org/10.3390/SU1304196710.3390/su13041967
- [38] Seebregts A., et al. Endogenous learning and technology clustering: Analysis with MARKAL model of the Western European energy system. Int. J. Glob. Energy Issues 2000:14(1–4):289–319. https://doi.org/10.1504/IJGEI.2000.00443010.1504/IJGEI.2000.004430
- [39] Salvucci R., et al. Modelling transport modal shift in TIMES models through elasticities of substitution. Appl. Energy 2018:232:740–751. https://doi.org/10.1016/J.APENERGY.2018.09.08310.1016/j.apenergy.2018.09.083
- [40] Jaunzems D., et al. Adaptation of TIMES model structure to industrial, commercial and residential sectors. Environ. Clim. Technol. 2020:24(1):392–405. https://doi.org/10.2478/RTUECT-2020-002310.2478/rtuect-2020-0023
- [41] Stolarski M. J., et al. Bioenergy technologies and biomass potential vary in Northern European countries. Renew. Sustain. Energy Rev. 2020:133:110238. https://doi.org/10.1016/J.RSER.2020.11023810.1016/j.rser.2020.110238
- [42] Lauka D., Barisa A., Blumberga D. Assessment of the availability and utilization potential of low-quality biomass in Latvia. Energy Procedia 2018:147:518–524. https://doi.org/10.1016/J.EGYPRO.2018.07.06510.1016/j.egypro.2018.07.065
- [43] Irmak S. Biomass as Raw Material for Production of High-Value Products. In Biomass Vol. Estim. Valorization Energy. London: Intechopen, 2017. https://doi.org/10.5772/6550710.5772/65507