Have a personal or library account? Click to login
Mapping of New Business Models in Domains of Technologies and Energy for Modelling of Dynamics of Clean Energy Transition Cover

Mapping of New Business Models in Domains of Technologies and Energy for Modelling of Dynamics of Clean Energy Transition

Open Access
|Dec 2021

References

  1. [1] Proposal for a REGULATION OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL establishing the framework for achieving climate neutrality and amending Regulation (EU) 2018/1999 (European Climate Law). Brussels: European Commission, 2020.
  2. [2] Henner D., REN21. Global status report. Paris: REN21, 2017.
  3. [3] Energy information aministration. Fossil fuels account for the largest share of U.S. energy production and consumption. 2020 [Online]. [Accessed 27.12.2020]. Available: https://www.eia.gov/todayinenergy/detail.php?id=45096
  4. [4] Energy information aministration. EIA projects nearly 50% increase in world energy usage by 2050, ed by growth in Asia [Online]. [Accessed 12.12.2020] Available: https://www.eia.gov/todayinenergy/detail.php?id=41433
  5. [5] Gholami H., Røstvik H. N. Economic analysis of BIPV systems as a building envelope material for building skins in Europe. Energy 2020:204:117931. https://doi.org/10.1016/j.energy.2020.11793110.1016/j.energy.2020.117931
  6. [6] Gholami H., et al. Lifecycle cost analysis (LCCA) of tailor-made building integrated photovoltaics (BIPV) façade: Solsmaragden case study in Norway. Sol. Energy 2020:211:488–502. https://doi.org/10.1016/j.solener.2020.09.08710.1016/j.solener.2020.09.087
  7. [7] Settou B., et al. GIS-based method for future prospect of energy supply in Algerian road transport sector using solar roads technology. Energy Procedia 2019:162:221–230. https://doi.org/10.1016/j.egypro.2019.04.02410.1016/j.egypro.2019.04.024
  8. [8] Liu Z., et al. Towards feasibility of photovoltaic road for urban traffic-solar energy estimation using street view image. J. Clean. Prod. 2019:228:303–318. https://doi.org/10.1016/j.jclepro.2019.04.26210.1016/j.jclepro.2019.04.262
  9. [9] Bolwig S,. et al. Climate-friendly but socially rejected energy-transition pathways: The integration of techno-economic and socio-technical approaches in the Nordic-Baltic region. Energy Res. Soc. Sci. 2020:67:101559. https://doi.org/10.1016/j.erss.2020.10155910.1016/j.erss.2020.101559
  10. [10] Brennan N., van Rensburg T. M. Public preferences for wind farms involving electricity trade and citizen engagement in Ireland. Energy Policy 2020:147:111872. https://doi.org/10.1016/j.enpol.2020.11187210.1016/j.enpol.2020.111872
  11. [11] Ladenburg J., et al. The offshore-onshore conundrum: Preferences for wind energy considering spatial data in Denmark. Renew. Sustain. Energy Rev. 2020:121:109711. https://doi.org/10.1016/j.rser.2020.10971110.1016/j.rser.2020.109711
  12. [12] Ghenai C., et al. Design of Hybrid Solar Photovoltaics/Shrouded Wind Turbine Power System for Thermal Pyrolysis of Plastic Waste. Case Stud. Therm. Eng. 2020:22:100773. https://doi.org/10.1016/j.csite.2020.10077310.1016/j.csite.2020.100773
  13. [13] Chrysochoidis-Antsos N., Escudé M. R., van Wijk A. J. M. Technical potential of on-site wind powered hydrogen producing refuelling stations in the Netherlands. Int. J. Hydrogen Energy 2020:45(46):25096–25108. https://doi.org/10.1016/j.ijhydene.2020.06.12510.1016/j.ijhydene.2020.06.125
  14. [14] Xiong B., et al. Spatial flexibility in redispatch: Supporting low carbon energy systems with Power-to-Gas. Appl. Energy 2020:283:116201. https://doi.org/10.1016/j.apenergy.2020.11620110.1016/j.apenergy.2020.116201
  15. [15] Niemelä T., Kosonen R., Jokisalo J. Cost-optimal energy performance renovation measures of educational buildings in cold climate. Appl. Energy 2016:183:1005–1020. https://doi.org/10.1016/j.apenergy.2016.09.04410.1016/j.apenergy.2016.09.044
  16. [16] Niemelä T., Kosonen R., Jokisalo J. Cost-effectiveness of energy performance renovation measures in Finnish brick apartment buildings. Energy Build. 2017:137:60–75. https://doi.org/10.1016/j.enbuild.2016.12.03110.1016/j.enbuild.2016.12.031
  17. [17] Niemelä T., Kosonen R., Jokisalo J. Energy performance and environmental impact analysis of cost-optimal renovation solutions of large panel apartment buildings in Finland. Sustain. Cities Soc. 2017:32:9–30. https://doi.org/10.1016/j.scs.2017.02.01710.1016/j.scs.2017.02.017
  18. [18] Wang Z. Heat pumps with district heating for the UK’s domestic heating: Individual versus district level. Energy Procedia 2018:149:354–362. https://doi.org/10.1016/j.egypro.2018.08.19910.1016/j.egypro.2018.08.199
  19. [19] Timmerberg S., Kaltschmitt M., Finkbeiner M. Hydrogen and hydrogen-derived fuels through methane decomposition of natural gas – GHG emissions and costs. Energy Convers. Manag. X 2020:7:100043. https://doi.org/10.1016/j.ecmx.2020.10004310.1016/j.ecmx.2020.100043
  20. [20] Menad C. A., Gomri R., Bouchahdane M. Data on safe hydrogen production from the solar photovoltaic solar panel through alkaline electrolyser under Algerian climate. Data in Brief 2018:21:1051–1060. https://doi.org/10.1016/j.dib.2018.10.10610.1016/j.dib.2018.10.106622682230450399
  21. [21] Maruf M. H., et al. Adaptation for sustainable implementation of Smart Grid in developing countries like Bangladesh. Energy Reports 2020:6:2520–2530. https://doi.org/10.1016/j.egyr.2020.09.01010.1016/j.egyr.2020.09.010
  22. [22] Bagdadee A. H., et al. Energy management for the industrial sector in smart grid system. Energy Reports 2020:6:1432–1442. https://doi.org/10.1016/j.egyr.2020.11.00510.1016/j.egyr.2020.11.005
  23. [23] Hauben M., Hartford C. G. Artificial Intelligence in Pharmacovigilance: Scoping Points to Consider. Clin. Ther. 2021:43(2):372–379. https://doi.org/10.1016/j.clinthera.2020.12.01410.1016/j.clinthera.2020.12.01433478803
  24. [24] Pan Y., Zhang L. Roles of artificial intelligence in construction engineering and management: A critical review and future trends. Automation in Construction 2021:122:103517. https://doi.org/10.1016/j.autcon.2020.10351710.1016/j.autcon.2020.103517
  25. [25] Brown J., Abate A., Rogers A. Disaggregation of household solar energy generation using censored smart meter data. Energy Build. 2021:231:110617. https://doi.org/10.1016/j.enbuild.2020.11061710.1016/j.enbuild.2020.110617
  26. [26] Eurostat. Share of energy from renewable sources. 2019 [Online]. [Accessed 20.12.2020]. Available: https://appsso.eurostat.ec.europa.eu/nui/setupDownloads.do
  27. [27] Mehrjerdi H. Resilience oriented vehicle-to-home operation based on battery swapping mechanism. Energy 2021:218:119528. https://doi.org/10.1016/j.energy.2020.11952810.1016/j.energy.2020.119528
DOI: https://doi.org/10.2478/rtuect-2021-0087 | Journal eISSN: 2255-8837 | Journal ISSN: 1691-5208
Language: English
Page range: 1152 - 1164
Published on: Dec 13, 2021
Published by: Riga Technical University
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2021 Madara Rieksta, Gatis Bazbauers, Andra Blumberga, Dagnija Blumberga, published by Riga Technical University
This work is licensed under the Creative Commons Attribution 4.0 License.