Have a personal or library account? Click to login
Bibliometric Analysis of the Solar Thermal System Control Methods Cover

Bibliometric Analysis of the Solar Thermal System Control Methods

Open Access
|Dec 2021

References

  1. [1] Weiss W., Spörk-Dür M. Solar Heat Worldwide 2020 - Global market development and trends in 2019. Sci. Technol. Built Environ. 2019:24(8):819.10.18777/ieashc-shw-2019-0001
  2. [2] Ellegaard O., Wallin J. A. The bibliometric analysis of scholarly production: How great is the impact? Scientometrics 2015:105(3):1809–1831. https://doi.org/10.1007/s11192-015-1645-z10.1007/s11192-015-1645-z464312026594073
  3. [3] Tarragona J., de Gracia A., Cabeza L. F. Bibliometric analysis of smart control applications in thermal energy storage systems. A model predictive control approach. J. Energy Storage 2020:32:101704. https://doi.org/10.1016/j.est.2020.10170410.1016/j.est.2020.101704
  4. [4] Calderón A., et al. Where is Thermal Energy Storage (TES) research going?-A bibliometric analysis. Sol. Energy 2019:200:37–50. https://doi.org/10.1016/j.solener.2019.01.05010.1016/j.solener.2019.01.050
  5. [5] Saikia K., et al. A bibliometric analysis of trends in solar cooling technology. Sol. Energy 2020:199:100–114. https://doi.org/10.1016/j.solener.2020.02.01310.1016/j.solener.2020.02.013
  6. [6] Li J., et al. Citation analysis: Comparison of web of science®, scopusTM, scifinder®, and google scholar. J. Electron. Resour. Med. Libr. 2010:7(3):196–217. https://doi.org/10.1080/15424065.2010.50551810.1080/15424065.2010.505518
  7. [7] Aria M., Cuccurullo C. Bibliometrix: An R-tool for comprehensive science mapping analysis. J. Informetr. 2017:11(4):959–975. https://doi.org/10.1016/j.joi.2017.08.00710.1016/j.joi.2017.08.007
  8. [8] CoreTeam R. R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing, 2017:2.
  9. [9] Martín-Martín A., et al. Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. 2018:12(4):1160–1177. https://doi.org/10.1016/j.joi.2018.09.00210.1016/j.joi.2018.09.002
  10. [10] Van Eck N. J., Waltman L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 2010:84:523–538. https://doi.org/10.1007/s11192-009-0146-310.1007/s11192-009-0146-3288393220585380
  11. [11] Rahman A., Saikia L. C., Sinha N. AGC of dish-Stirling solar thermal integrated thermal system with biogeography based optimised three degree of freedom PID controller. IET Renew. Power Gener. 2016:10(8):1161–1170. https://doi.org/10.1049/iet-rpg.2015.047410.1049/iet-rpg.2015.0474
  12. [12] Tasnin W., Saikia L. C. Maiden application of an sine-cosine algorithm optimised FO cascade controller in automatic generation control of multi-area thermal system incorporating dish-Stirling solar and geothermal power plants. IET Ren. Pow. Gen. 2018:12(5):585–597. https://doi.org/10.1049/iet-rpg.2017.006310.1049/iet-rpg.2017.0063
  13. [13] Barik A. K., Das D. C. Proficient load-frequency regulation of demand response supported bio-renewable cogeneration based hybrid microgrids with quasi-oppositional selfish-herd optimisation. IET Gener. Transm. Distrib. 2019:13(13):2889–2898. https://doi.org/10.1049/iet-gtd.2019.016610.1049/iet-gtd.2019.0166
  14. [14] Saha A., Saikia L. C. Utilisation of ultra-capacitor in load frequency control under restructured STPP-thermal power systems using WOA optimised PIDN-FOPD controller. IET Gener. Transm. Distrib. 2017:11(13):3318–3331. https://doi.org/10.1049/iet-gtd.2017.008310.1049/iet-gtd.2017.0083
  15. [15] Cirocco L. R., et al. Controlling stored energy in a concentrating solar thermal power plant to maximise revenue. IET Ren. Pow. Gener. 2015:9(4):379–388. https://doi.org/10.1049/iet-rpg.2014.014110.1049/iet-rpg.2014.0141
  16. [16] Menéndez R. P., et al. A novel modeling of molten-salt heat storage systems in thermal solar power plants. Energies 2014:7(10):6721–6740. https://doi.org/10.3390/en710672110.3390/en7106721
  17. [17] Das D. C., Roy A. K., Sinha N. GA based frequency controller for solar thermal-diesel-wind hybrid energy generation/energy storage system. Int. J. Electr. Power Energy Syst. 2012:43(1):262–279. https://doi.org/10.1016/j.ijepes.2012.05.02510.1016/j.ijepes.2012.05.025
  18. [18] Dorer V., Weber R., Weber A. Performance assessment of fuel cell micro-cogeneration systems for residential buildings. Energy Build. 2005:37(11):1132–1146. https://doi.org/10.1016/j.enbuild.2005.06.01610.1016/j.enbuild.2005.06.016
  19. [19] Chang H., et al. Modeling and optimization of a solar driven membrane distillation desalination system. Renew. En. 2010:35(12):2714–2722. https://doi.org/10.1016/j.renene.2010.04.02010.1016/j.renene.2010.04.020
DOI: https://doi.org/10.2478/rtuect-2021-0084 | Journal eISSN: 2255-8837 | Journal ISSN: 1691-5208
Language: English
Page range: 1114 - 1127
Published on: Dec 9, 2021
Published by: Riga Technical University
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2021 Mikelis Dzikevics, Dzintars Jaunzems, Maris Terauds, published by Riga Technical University
This work is licensed under the Creative Commons Attribution 4.0 License.