Have a personal or library account? Click to login
Assessment of Different Binders for Activated Carbon Granulation for the Use in CO2 Adsorption Cover

Assessment of Different Binders for Activated Carbon Granulation for the Use in CO2 Adsorption

Open Access
|Dec 2021

References

  1. [1] European Commission. Climate change consequences [Online]. [Accessed 18.03.2021]. Available: https://ec.europa.eu/clima/climate-change/climate-change-consequences_en
  2. [2] Uzdevumi.lv. Oxygen [Online]. [Accessed 05.04.2020]. Available: https://www.uzdevumi.lv/p/dabaszinibas/5-klase/tiras-vielas-un-maisijumi-5877/re-5fe5692b-9740-4ee6-8aba-277692b2712e (in Latvian)
  3. [3] Nathanson J. A. Air pollution. Encyclopedia Britannica, 2020.
  4. [4] United States Environmental Protection Agency. Inventory of U.S. Greenhouse Gas Emissions and Sinks [Online]. [Accessed 15.03.2021]. Available: https://www.epa.gov/ghgemissions/inventory-us-greenhouse-gas-emissions-and-sinks
  5. [5] Heinrici C., Company D. Sorbents for Air and Gas Purification. Technical Article Program (TAP).
  6. [6] Vegere K., et al. Alkali-activated metakaolin as a zeolite-like binder for the production of adsorbents. Inorganics 2019:7(12):141. https://doi.org/10.3390/inorganics712014110.3390/inorganics7120141
  7. [7] Adsorption, Absorption and Desorption — What’s the Difference? [Online]. [Accessed 16.03.2021]. Available: https://www.chromatographytoday.com/news/hplc-uhplc/31/breaking-news/adsorption-absorption-and-desorptionmdash-whatrsquos-the-difference/31397
  8. [8] Chiang Y. C., Yeh C. Y., Weng C. H. Carbon dioxide adsorption on porous and functionalized activated carbon fibers. Appl. Sci. 2019:9(10):1977. https://doi.org/10.3390/app910197710.3390/app9101977
  9. [9] Chen L., et al. Cooperative CO2 adsorption promotes high CO2 adsorption density over wide optimal nanopore range. Adsorpt. Sci. Technol. 2018:36(1-2):625–639. https://doi.org/10.1177/026361741771357310.1177/0263617417713573
  10. [10] Yang R. T. Adsorbents: Fundamentals and Applications. Hoboken: John Wiley & Sons, Inc, 2003,
  11. [11] Ruthven D. M. Principles of Adsorption and Adsorption Processes. Hoboken: John Wiley & Sons, Inc., 1984.
  12. [12] Hung Y., et al. Granular Activated Carbon Adsorption. In Wang L.K., Hung YT., Shammas N.K. (eds) Physicochemical Treatment Processes. Handbook of Environmental Engineering, Humana Press, 2005:3:573–633. https://doi.org/10.1385/1-59259-820-x:57310.1385/1-59259-820-x:573
  13. [13] Menéndez-Díaz J. A., Martín-Gullón I. Chapter 1: Types of carbon adsorbents and their production. Interface Science and Technology 2006:7:1–47, https://doi.org/10.1016/S1573-4285(06)80010-410.1016/S1573-4285(06)80010-4
  14. [14] Chowdhury Z. Z., et al. Preparation of carbonaceous adsorbents from lignocellulosic biomass and their use in removal of contaminants from aqueous solution. BioResources 2013:8(4):6523–6555. https://doi.org/10.15376/biores.8.4.6523-655510.15376/biores.8.4.6523-6555
  15. [15] Crittenden B., Thomas W. J. Adsorption Technology and Design. Burlington: Butterworth-Heinemann, 1998.
  16. [16] Melouki R., Ouadah A., Llewellyn P. L. The CO2 adsorption behavior study on activated carbon synthesized from olive waste. J. CO2 Util. 2020:42:101292. https://doi.org/10.1016/j.jcou.2020.10129210.1016/j.jcou.2020.101292
  17. [17] Buvaneswari K., Singanan M. Review on scanning electron microscope analysis and adsorption properties of different activated carbon materials. Mater. Today Proc. 2020. https://doi.org/10.1016/j.matpr.2020.09.426 (in Press)10.1016/j.matpr.2020.09.426
  18. [18] Sarwar A., et al. Synthesis and characterization of biomass-derived surface-modified activated carbon for enhanced CO2 adsorption. J. CO2 Util. 2021:46:101476. https://doi.org/10.1016/j.jcou.2021.10147610.1016/j.jcou.2021.101476
  19. [19] Volperts A., et al. Biomass based activated carbons for fuel cells. Renew. Energy 2019:141:40–45. https://doi.org/10.1016/j.renene.2019.04.00210.1016/j.renene.2019.04.002
  20. [20] Dec Impianti. Activated carbon [Online]. [Accessed 18.03.2021]. Available: https://www.decimpianti.com/processes/activated-carbon_en.html
  21. [21] Mieville R. L., Robinson K. K. Carbon molecular sieves and other porous carbons. Mega-Carbon Co., 2000.
  22. [22] Shanmugam S. Granulation techniques and technologies: recent progresses. BioImpacts 2015:5:55–63. https://doi.org/10.15171/bi.2015.0410.15171/bi.2015.04
  23. [23] Argalis P. P., et al. Suitability Assessment for the Application of Adsorption. Crystals 2021:11(4):360. https://doi.org/10.3390/cryst1104036010.3390/cryst11040360
  24. [24] Fink J. K. Reactive Polymers Fundamentals and Applications: A Concise Guide to Industrial Polymers. Elsevier, 2013. https://doi.org/10.1016/C2012-0-02516-110.1016/C2012-0-02516-1
  25. [25] Ormondroyd G. A. Adhesives for wood composites. Elsevier, 2015.10.1016/B978-1-78242-454-3.00003-2
  26. [26] Brunauer S., Emmett P. H., Teller E. Adsorption of Gases in Multimolecular Layers. J. Am. Chem. Soc. 1938:60(2):309–319. https://doi.org/10.1021/ja01269a02310.1021/ja01269a023
  27. [27] Brame J. A., Griggs C. Surface Area Analysis Using the Brunauer-Emmett-Teller (BET) Method: Scientific Operation Procedure Series: SOP-C. Vicksburg: U.S Army Corps of Engineering, 2016.
  28. [28] Joewondo N. Pore structure of Micro- and mesoporous Mudrocks based on nitrogen and carbon dioxide sorption. Golden: Colorado School of Mines, 2018.
  29. [29] Sing K. The use of nitrogen adsorption for the characterisation of porous materials. Colloids Surfaces A: Physicochem. Eng. Asp. 2001:187–188:3–9. https://doi.org/10.1016/S0927-7757(01)00612-410.1016/S0927-7757(01)00612-4
  30. [30] Zauls V., Krutohvostovs R. Skenējošā Elektronu Mikroskopija (SEM) (Scanning Electron Microscopy (SEM).). Riga: LU, 2005. (in Latvian)
  31. [31] Thermo Fisher Scientific. Introduction to FTIR spectroscopy [Online]. [Accessed 17.03.2021]. Available: https://www.thermofisher.com/lv/en/home/industrial/spectroscopy-elemental-isotope-analysis/spectroscopy-elemental-isotope-analysis-learning-center/molecular-spectroscopy-information/ftir-information/ftir-basics.html
  32. [32] Ma M., et al. Adsorption of congo red on mesoporous activated carbon prepared by CO2 physical activation. Chinese J. Chem. Eng. 2020:28:1069–1076. https://doi.org/10.1016/j.cjche.2020.01.01610.1016/j.cjche.2020.01.016
  33. [33] Deng H., et al. Optimization of preparation of activated carbon from cotton stalk by microwave assisted phosphoric acid-chemical activation. J. Hazard. Mater. 2010:182(1–3):217–224. https://doi.org/10.1016/j.jhazmat.2010.06.01810.1016/j.jhazmat.2010.06.01820605068
  34. [34] Zhang Z., et al. Sudden heating of H3PO4-loaded coconut shell in CO2 flow to produce super activated carbon and its application for benzene adsorption. Renew. Energy 2020:153:1091–1099. https://doi.org/10.1016/j.renene.2020.02.05910.1016/j.renene.2020.02.059
  35. [35] Naderi M. Surface Area: Brunauer-Emmett-Teller (BET). Prog. Filtr. Sep. 2015:585–608. https://doi.org/10.1016/B978-0-12-384746-1.00014-810.1016/B978-0-12-384746-1.00014-8
  36. [36] Serafin J., et al. Preparation of low-cost activated carbons from amazonian nutshells for CO2 storage. Biomass and Bioenergy 2021:144:105925. https://doi.org/10.1016/j.biombioe.2020.10592510.1016/j.biombioe.2020.105925
  37. [37] Pramanik P., et al. High surface area porous carbon from cotton stalk agro-residue for CO2 adsorption and study of techno-economic viability of commercial production. J. CO2 Util. 2021:45:101450. https://doi.org/10.1016/j.jcou.2021.10145010.1016/j.jcou.2021.101450
  38. [38] Hao W., et al. Activated carbons prepared from hydrothermally carbonized waste biomass used as adsorbents for CO2. Appl. Energy 2013:112:526–532. https://doi.org/10.1016/j.apenergy.2013.02.02810.1016/j.apenergy.2013.02.028
  39. [39] Castrillon M. C., et al. CO2 and H2S Removal from CH4-Rich Streams by Adsorption on Activated Carbons Modified with K2CO3, NaOH, or Fe2O3. Energy and Fuels 2016:30:9596–9604. https://doi.org/10.1021/acs.energyfuels.6b0166710.1021/acs.energyfuels.6b01667
  40. [40] Wang H., et al. Coffee grounds derived N enriched microporous activated carbons: Efficient adsorbent for post-combustion CO2 capture and conversion. J. Colloid Interface Sci. 2020:578:491–499. https://doi.org/10.1016/j.jcis.2020.05.12510.1016/j.jcis.2020.05.12532535430
  41. [41] Peredo-Mancilla D., Matei C., Ho B. Comparative study of the CH4/CO2 Adsorption Selectivity of Activated Carbons for Biogas Upgrading. J. Env. Chem. Eng. 2019:7(5):103368. https://doi.org/10.1016/j.jece.2019.10336810.1016/j.jece.2019.103368
  42. [42] Goetz V., Pupier O., Guillot A. Carbon dioxide-methane mixture adsorption on activated carbon. Adsorption 2006:12:55–63. https://doi.org/10.1007/s10450-006-0138-z10.1007/s10450-006-0138-z
DOI: https://doi.org/10.2478/rtuect-2021-0082 | Journal eISSN: 2255-8837 | Journal ISSN: 1691-5208
Language: English
Page range: 1086 - 1100
Published on: Dec 9, 2021
Published by: Riga Technical University
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2021 Pauls Argalis, Ilze Jerane, Aivars Zhurinsh, Kristine Vegere, published by Riga Technical University
This work is licensed under the Creative Commons Attribution 4.0 License.