Have a personal or library account? Click to login
Production of Renewable Insulation Material – New Business Model of Bioeconomy for Clean Energy Transition Cover

Production of Renewable Insulation Material – New Business Model of Bioeconomy for Clean Energy Transition

Open Access
|Dec 2021

References

  1. [1] Jones M., et al. Waste-derived low-cost mycelium composite construction materials with improved fire safety. Fire Mater. 2018:42(7):816–825. https://doi.org/10.1002/fam.263710.1002/fam.2637
  2. [2] Dougoud M. Mycelium Infrastructures for Impermanent Futures. Thesis. Washington: University of Wahington, 2018.
  3. [3] Islam M. R., et al. Mechanical behavior of mycelium-based particulate composites. J. Mater. Sci. 2018:53:16371–16382. https://doi.org/10.1007/s10853-018-2797-z10.1007/s10853-018-2797-z
  4. [4] Fallis A. Development and Testing of Mycelium-Based Composite Materials for Shoe Sole Applications. J. Chem. Inf. Model. 2013:53(9):1689–1699.10.1021/ci400128m
  5. [5] Mazur R. Mechanical Properties of Sheets Comprised of Mycelium: A Paper Engineering Perspective. Honor. Theses 2015:68.
  6. [6] Butu A., et al. Mycelium-based materials for the ecodesign of bioeconomy. Dig. J. Nanomater. Biostructures 2020:15(5):1129–1140.
  7. [7] Appels F. V. W., Wösten H. A. B. Mycelium Materials. Encyclopedia of Mycology 2021:2:710–718. https://doi.org/10.1016/b978-0-12-809633-8.21131-x10.1016/B978-0-12-809633-8.21131-X
  8. [8] Girometta C., et al. Physico-mechanical and thermodynamic properties of mycelium-based biocomposites: A review. Sustain. 2019:11(1):281. https://doi.org/10.3390/su1101028110.3390/su11010281
  9. [9] Abhijith R., Ashok A., Rejeesh C. R. Sustainable packaging applications from mycelium to substitute polystyrene: A review. Mater. Today Proc. 2018:5(1):2139–2145. https://doi.org/10.1016/j.matpr.2017.09.21110.1016/j.matpr.2017.09.211
  10. [10] Elsacker E., et al. A comprehensive framework for the production of mycelium-based lignocellulosic composites. Sci. Total Environ. 2020:725:138431. https://doi.org/10.1016/j.scitotenv.2020.13843110.1016/j.scitotenv.2020.138431
  11. [11] Lelivelt R. J. J. The mechanical possibilities of mycelium materials. Master Thesis. Eindhoven: Eindhoven University of Technology, 2015.
  12. [12] Haneef M., et al. Advanced Materials from Fungal Mycelium: Fabrication and Tuning of Physical Properties. Sci. Rep. 2017:7:1–11. https://doi.org/10.1038/srep4129210.1038/srep41292
  13. [13] Javadian A., et al. Application of Mycelium-Bound Composite Materials in Construction Industry: A Short Review. 2020.10.15226/sojmse.2020.00162
  14. [14] Ojanen T., Seppä I. P., Nykänen E. Thermal insulation products and applications - Future road maps. Energy Procedia 2015:78:309–314. https://doi.org/10.1016/j.egypro.2015.11.64910.1016/j.egypro.2015.11.649
  15. [15] Tsao Y. Characterization of mycelium- based composites as foam-like wall insulation material. Master Thesis. Eindhoven: Eindhoven University of Technology, 2020.
  16. [16] Honors E., et al. Investigations of Mycelium as a Low-carbon Building Material Investigations of Mycelium as a Low-carbon Building Material. Hanover: Thayer School of Engineering, 2020.
  17. [17] Forrester J. W. Counterintuitive behavior of social systems. Technol. Forecast. Soc. Change 1971:3:1–22. https://doi.org/10.1016/S0040-1625(71)80001-X10.1016/S0040-1625(71)80001-X
  18. [18] Binder T., et al. Developing system dynamics models from causal loop diagrams. Proc. 22nd Int. Conf. Syst. Dyn. Soc. 2004:1–21.
  19. [19] Zadražil F. Influence of CO2 concentration on the mycelium growth of three pleurotus species. Eur. J. Appl. Microbiol. 1975:1(4):327–335. https://doi.org/10.1007/BF0138269210.1007/BF01382692
  20. [20] City of Winnipeg. Emission factors in kg CO2-equivalent per unit. WSTP South End Plant Process Selection Report. Winnepeg: CW, 2011.
  21. [21] Tanaka H. Thermal distillation system utilizing biomass energy burned in stove by means of heat pipe. Alexandria Eng. J. 2016:55(3):2203–2208. https://doi.org/10.1016/j.aej.2016.06.00810.1016/j.aej.2016.06.008
  22. [22] Rein P. W. The carbon footprint of sugar. Zuckerindustrie 2010:135(7):427–424. https://doi.org/10.36961/si1000610.36961/si10006
  23. [23] Saunders C., et al. Food Miles – Comparative Energy/Emissions Performance of New Zealand’ s Agriculture Industry. Research report No. 285. Lincoln: Lincoln University New Zealand, 2006.
  24. [24] Yusuf M. A., et al. Potential of Traditional Sago Starch: Life Cycle Assessment (LCA) Perspective. IOP Conf. Ser. Mater. Sci. Eng. 2019:507(1):012014. https://doi.org/10.1088/1757-899X/507/1/01201410.1088/1757-899X/507/1/012014
  25. [25] Godart C., et al. LCA of Starch Potato From Field To Starch Production Plant Gate. Presented at the 8th Int. Conf. LCA Agri-Food Sect., 2012.
  26. [26] Flysjö A. Greenhouse gas emissions in milk and dairy product chains. Improving the carbon footprint of dairy products Greenhouse gas emissions in milk and dairy product chains improving the carbon footprint of dairy products. PhD Thesis. Aarhus: Aarhus University, 2012.
  27. [27] Wood S., Cowie A. For Fertiliser Production . Cooperative Research Centre for Greenhouse Accounting. New South Wales: Research and Development Division, 2004
  28. [28] Vittuari M., De Menna F., Pagani M. The hidden burden of food waste: The double energy waste in Italy. Energies 2016:9(8):660 https://doi.org/10.3390/en908066010.3390/en9080660
  29. [29] Chang I., Im J., Cho G. C. Introduction of microbial biopolymers in soil treatment for future environmentally-friendly and sustainable geotechnical engineering. Sustainability 2016:8(3):251. https://doi.org/10.3390/su803025110.3390/su8030251
  30. [30] FAO/WHO. Combined Compendium of Food Additive Specifications. All specifications monographs from the 1st to the 65th meeting (1956–2005). FAO JECFA Monogr. Rome: FAO, 2006.
  31. [31] Dove C. A., Bradley F. F., Patwardhan S. V. A material characterization and embodied energy study of novel clay-alginate composite aerogels. Energy Build. 2019:184:88–98. https://doi.org/10.1016/j.enbuild.2018.10.04510.1016/j.enbuild.2018.10.045
  32. [32] Santana M. V. E., Zhang Q., Mihelcic J. R. Influence of Water Quality on the Embodied Energy of Drinking Water Treatment. Environ. Sco. Technol. 2014:48(5):3084–3091. https://doi.org/10.1021/es404300y10.1021/es404300y24517328
  33. [33] Sgarbossa A., et al. Comparative life cycle assessment of bioenergy production from differentwood pellet supply chains. Forests 2020:11(11):1–16. https://doi.org/10.3390/f1111112710.3390/f11111127
  34. [34] May B., et al. Cradle-to-gate inventory of wood production from Australian softwood plantations and native hardwood forests: Embodied energy, water use and other inputs. For. Ecol. Manage. 2012:264:37–50. https://doi.org/10.1016/j.foreco.2011.09.01610.1016/j.foreco.2011.09.016
  35. [35] Wiśniewski P., Kistowski M. Greenhouse gas emissions from cultivation of plants used for biofuel production in Poland. Atmosphere 2020:11(4):1–12. https://doi.org/10.3390/ATMOS1104039410.3390/atmos11040394
  36. [36] Straw-Bale [Online]. [Accessed 07.05.2021]. Available: https://materialspalette.org/straw-bale
  37. [37] Havrysh V., et al. Life Cycle Energy Consumption and Carbon Dioxide Emissions of Agricultural Residue Feedstock for Bioenergy. Appl. Sci. 2021:11(5):2009. https://doi.org/10.3390/app1105200910.3390/app11052009
  38. [38] VARAM. Siltumnīcefekta gāzu emisiju aprēķina metodika (Greenhouse gas emission calculation methodology) [Online]. [Accessed 30.04.2021]. Available: https://www.varam.gov.lv/lv/siltumnicefekta-gazu-emisiju-aprekinametodika
  39. [39] Blumberga A., et al. System dynamics model of a biotechonomy. J. Clean. Prod. 2018:172:4018–4032. https://doi.org/10.1016/j.jclepro.2017.03.13210.1016/j.jclepro.2017.03.132
DOI: https://doi.org/10.2478/rtuect-2021-0080 | Journal eISSN: 2255-8837 | Journal ISSN: 1691-5208
Language: English
Page range: 1061 - 1074
Published on: Dec 4, 2021
Published by: Riga Technical University
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2021 Ilze Luksta, Girts Bohvalovs, Gatis Bazbauers, Kriss Spalvins, Andra Blumberga, Dagnija Blumberga, published by Riga Technical University
This work is licensed under the Creative Commons Attribution 4.0 License.