References
- [1] Wierzbicki J., et al. Additive manufacturing technologies enabling rapid and interventional production of protective face shields and masks during the COVID-19 pandemic. Advances in Clinical and Experimental Medicine 2020:29:1021–1028. https://doi.org/10.17219/acem/12629610.17219/acem/12629633001589
- [2] Aydin A., et al. 3D printing in the battle against COVID-19. Emergent Materials 2021:4:363–386. https://doi.org/10.1007/s42247-021-00164-y10.1007/s42247-021-00164-y786867733585793
- [3] Ngo T. D., et al. Additive manufacturing (3D printing): A review of materials, methods, applications and challenges. Composites Part B: Engineering 2018:143:172–196. https://doi.org/10.1016/j.compositesb.2018.02.01210.1016/j.compositesb.2018.02.012
- [4] Mardis N. J. Emerging Technology and Applications of 3D Printing in the Medical Field. Missouri Medicine 2018:368–373.
- [5] Sharma S., Goel S. A. 3D Printing and its Future in Medical World. Journal of Medical Research and Innovation 2018:3(1):e000141. https://doi.org/10.15419/jmri.14110.15419/jmri.141
- [6] Roth G. A., et al. Potential occupational hazards of additive manufacturing. Journal of Occupational and Environmental hygiene 2019:16(5):321–328. https://doi.org/10.1080/15459624.2019.159162710.1080/15459624.2019.1591627655513430908118
- [7] The International Organization for Standardization. ISO/ASTM 52900:2015. Additive manufacturing. General principles. Terminology.
- [8] Dunn K. L., et al. Reducing ultrafine particulate emission from multiple 3D printers in an office environment using a prototype engineering control. Journal of Nanoparticle Research 2020:22:112. https://doi.org/10.1007/s11051-020-04844-410.1007/s11051-020-04844-4845515334552386
- [9] Bernatikova S., et al. Characterization of ultrafine particles and VOCs emitted from a 3D printer. International Journal of Environmental Research and Public Health 2021:18(3):929–944. https://doi.org/10.3390/ijerph1803092910.3390/ijerph18030929790856033494483
- [10] Gu J., et al. Characterization of particulate and gaseous pollutants emitted during operation of a desktop 3D printer. Environment International 2019:123:476–485. https://doi.org/10.1016/j.envint.2018.12.01410.1016/j.envint.2018.12.01430622073
- [11] Chan F. L., et al. Health survey of employees regularly using 3D printers. Occupational Medicine 2018:68(3):211–214. https://doi.org/10.1093/occmed/kqy04210.1093/occmed/kqy04229538712
- [12] Chan F. L., et al. Emissions and health risks from the use of 3D printers in an occupational setting. Journal of Toxicology and Environmental Health - Part A: Current Issues 2020:83(7):11–19. https:/doi.org/10.1080/15287394.2020.175175810.1080/15287394.2020.175175832316869
- [13] Afshar-Mohajer N., et al. Characterization of particulate matters and total VOC emissions from a binder jetting 3D printer. Building and Environment 2015:93(P2):293–301. https://doi.org/10.1016/j.buildenv.2015.07.01310.1016/j.buildenv.2015.07.013
- [14] Stephens B., et al. Ultrafine particle emissions from desktop 3D printers. Atmospheric Environment 2013:79:334–339. https://doi.org/10.1016/j.atmosenv.2013.06.05010.1016/j.atmosenv.2013.06.050
- [15] Byrley P., et al. Particle emissions from fused deposition modeling 3D printers: Evaluation and meta-analysis. Science of the Total Environment 2019:655:395–407. https://doi.org/10.1016/j.scitotenv.2018.11.07010.1016/j.scitotenv.2018.11.070835097030471608
- [16] Jeon H., et al. Effect of nozzle temperature on the emission rate of ultrafine particles during 3D printing. Indoor Air 2019:30(2):306–314. https://doi.org/10.1111/ina.1262410.1111/ina.1262431743481
- [17] Davis A. Y., et al. Characterization of volatile organic compound emissions from consumer level material extrusion 3D printers. Building and Environment 2019:160:10629. https://doi.org/10.1016/j.buildenv.2019.10620910.1016/j.buildenv.2019.106209
- [18] Wojtyła S., et al. 3D printer as a potential source of indoor air pollution. International Journal of Environmental Science and Technology 2020:17:207–218. https://doi.org/10.1007/s13762-019-02444-x10.1007/s13762-019-02444-x
- [19] Stefaniak A. B., et al. Characterization of chemical contaminants generated by a desktop fused deposition modeling 3-dimensional printer. Journal of Occupational and Environmental Hygiene 2017:14(7):540–550. https://doi.org/10.1080/15459624.2017.130258910.1080/15459624.2017.1302589596740828440728
- [20] Potter P. M., et al. VOC Emissions and Formation Mechanisms from Carbon Nanotube Composites during 3D Printing. Environmental Science and Technology 2019:53(8):4364–4370. https://doi.org/10.1021/acs.est.9b0076510.1021/acs.est.9b00765653241130875473
- [21] Azimi P., et al. Emissions of Ultrafine Particles and Volatile Organic Compounds from Commercially Available Desktop Three-Dimensional Printers with Multiple Filaments. Environmental Science and Technology 2016:50(3):1260–1268. https://doi.org/10.1021/acs.est.5b0498310.1021/acs.est.5b0498326741485
- [22] Floyd E. L., Wang J., Regens J. L. Fume emissions from a low-cost 3-D printer with various filaments. Journal of occupational and environmental hygiene 2017:14(7):523–533. https://doi.org/10.1080/15459624.2017.130258710.1080/15459624.2017.130258728406364
- [23] Kim Y., et al. Emissions of Nanoparticles and Gaseous Material from 3D Printer Operation. Environmental Science and Technology 2015:49(20):12044–12053. https://doi.org/10.1021/acs.est.5b0280510.1021/acs.est.5b0280526402038
- [24] Pinheiro N. D., et al. Paper-based optoelectronic nose for identification of indoor air pollution caused by 3D printing thermoplastic filaments. Analytica Chimica Acta 2021:1143:1–8. https://doi.org/10.1016/j.aca.2020.11.01210.1016/j.aca.2020.11.01233384106
- [25] Kagi N., et al. Indoor air quality for chemical and ultrafine particle contaminants from printers. Building and Environment 2007:42(5):1949–1954. https://doi.org/10.1016/j.buildenv.2006.04.00810.1016/j.buildenv.2006.04.008
- [26] He C., Morawska L., Taplin L. Particle emission characteristics of office printers. Environmental Science and Technology 2007:41(17):6039–6045. https://doi.org/10.1021/es063049z10.1021/es063049z17937279
- [27] Krug H. F., Wick P. Nanotoxikologie - eine interdisziplinäre Herausforderung (Nanotoxicology – an interdisciplinary challenge). Angewandte Chemie 2011:123(6):1294–1314. https://doi.org/10.1002/ange.201001037 (in German)10.1002/ange.201001037
- [28] Hashemi Habybabady R., et al. Effects of dust exposure on the respiratory health symptoms and pulmonary functions of street sweepers. Malaysian Journal of Medical Sciences 2018:25(6):76–84. https://doi.org/10.21315/mjms2018.25.6.810.21315/mjms2018.25.6.8642257630914881
- [29] Brändli O. Sind inhalierte Staubpartikel schädlich für unsere Lungen? (Are inhaled dust particles harmful for our lungs?) Schweizerische medizinische Wochenschrift 1996:126(50):2165–2174. (in German)
- [30] Yi J., et al. Emission of particulate matter from a desktop three-dimensional (3D) printer. Journal of Toxicology and Environmental Health - Part A: Current Issues 2016:79(11):453–465. https://doi.org/10.1080/15287394.2016.116646710.1080/15287394.2016.1166467491792227196745
- [31] Wojtyła S., Klama P., Baran T. Is 3D printing safe? Analysis of the thermal treatment of thermoplastics: ABS, PLA, PET, and nylon. Journal of Occupational and Environmental Hygiene 2017:14:80–85. https://doi.org/10.1080/15459624.2017.128548910.1080/15459624.2017.128548928165927
- [32] House R., Rajaram N., Tarlo S. M. Case report of asthma associated with 3D printing. Occupational Medicine 2017:67(8):652–654. https://doi.org/10.1093/occmed/kqx12910.1093/occmed/kqx12929016991
- [33] Hodgdon T., et al. Logistics of Three-dimensional Printing: Primer for Radiologists. Academic Radiology 2017:25(1):40–51. https://doi.org/10.1016/j.acra.2017.08.00310.1016/j.acra.2017.08.003646747729030283
- [34] Gümperlein I., et al. Acute health effects of desktop 3D printing (FDM) using ABS and PLA materials: an experimental exposure study in human volunteers. Indoor Air 2018:28(4):611–623. https://doi.org/10.1111/ina.1245810.1111/ina.1245829500848
- [35] Stefaniak A. B., et al. Evaluation of emissions and exposures at workplaces using desktop 3-dimensional printers. Journal of Chemical Health and Safety 2019:26(2):19–30. https://doi.org/10.1016/j.jchas.2018.11.00110.1016/j.jchas.2018.11.001688988531798757
- [36] Pavlovska I., et al. Comparison of biological markers in aerosol-weighed workplaces. Journal of Nanoparticle Research 2019:21:138. https://doi.org/10.1007/s11051-019-4578-210.1007/s11051-019-4578-2
- [37] Järvinen A., et al. Calibration of the new electrical low pressure impactor (ELPI+). Journal of Aerosol Science 2014:69:150–159. https://doi.org/10.1016/j.jaerosci.2013.12.00610.1016/j.jaerosci.2013.12.006
- [38] Pavlovska I., et al. Occupational exposure parameters for characterization of nanoparticulate matter toxicity: Metal versus wood processing. Process Safety and Environmental Protection 2016:102:230–237. https://doi.org/10.1016/j.psep.2016.03.01810.1016/j.psep.2016.03.018
- [39] NIOSH Manual of Analytical Methods (NMAM), Fourth Edition, ALIPHATIC ALDEHYDES: METHOD 2018 [Online]. [Assessed 20.03.2021]. Available: https://www.cdc.gov/niosh/docs/2003-154/pdfs/2018.pdf
- [40] United States Environmental Protection Agency: What are the Air Quality Standards for PM? [Online]. [Assessed 15.03.2021]. Available: https://www3.epa.gov/region1/airquality/pm-aq-standards.html
- [41] Government of Canada: Guidance for fine particulate matter (PM2.5) in residential indoor air [Online]. [Assessed 20.03.2021]. Available: https://www.canada.ca/en/health-canada/services/publications/healthy-living/guidance-fine-particulate-matter-pm2-5-residential-indoor-air.html
- [42] World Health Organization: WHO guidelines for indoor air quality: selected pollutants. Copenhagen: WHO, 2010.
- [43] The National Institute for Occupational Safety and Health (NIOSH): Table of IDLH values. Acetone [Online]. [Assessed 19.03.2021]. Available: https://www.cdc.gov/niosh/idlh/67641.html
- [44] Cabinet of Ministers Republic of Latvia. Ministru kabineta noteikumi Nr. 359 Darba aizsardzības prasības darba vietās (Regulation of Cabinet of Ministers No 359. Labor protection requirements at workplaces.). Latvijas Vestnesis 2009:69. (in Latvian)
- [45] Jinghai Y., et al. Emission of particulate matter from a desktop three-dimensional (3D) printer. Journal of Toxicology and Environmental Health, Part A 2016:79(11):453–465. http://dx.doi.org/10.1080/15287394.2016.116646710.1080/15287394.2016.1166467491792227196745
- [46] Jensen A. C. Ø., et al. Nanoparticle Exposure and Workplace Measurements During Processes Related to 3D Printing of a Metal Object. Frontiers in Public Health 2020:8:778. https://doi.org/10.3389/fpubh.2020.60871810.3389/fpubh.2020.608718772387133324605
- [47] Mendes L., et al. Characterization of Emissions from a Desktop 3D Printer. Journal of Industrial Ecology 2017:21(1):94–106. https://doi.org/10.1111/jiec.1256910.1111/jiec.12569
- [48] Zhoua Y., et al. Investigation of Ultrafine Particle Emissions of Desktop 3D Printers in the Clean Room. Procedia Engineering 2015:121:506–512. https://doi.org/10.1016/j.proeng.2015.08.109910.1016/j.proeng.2015.08.1099