Have a personal or library account? Click to login
Synergistic Generation of Reactive Oxygen Species by Visible Light Activated TiO2 and S. Enterica Interaction Cover

Synergistic Generation of Reactive Oxygen Species by Visible Light Activated TiO2 and S. Enterica Interaction

Open Access
|Nov 2021

References

  1. [1] WHO, UNICEF. Special Focus on Covid-19 Who/UNICEF Joint Monitoring Programme for Water Supply, Sanitation and Hygiene Progress on Drinking Water, Sanitation and Hygiene in Schools. New York: WHO, 2020.
  2. [2] Buor D. Water needs and women’s health in the Kumasi metropolitan area, Ghana. Health & Place 2004:10(1):85–103. https://doi.org/10.1016/S1353-8292(03)00050-910.1016/S1353-8292(03)00050-9
  3. [3] EPA. Water Treatment Manual : Disinfection. County Wexford: EPA, 2013.
  4. [4] Motshekga S. C., et al. Preparation and antibacterial activity of chitosan-based nanocomposites containing bentonite-supported silver and zinc oxide nanoparticles for water disinfection. Applied Clay Science 2015:114:330–339. https://doi.org/10.1016/j.clay.2015.06.01010.1016/j.clay.2015.06.010
  5. [5] Singh S., Garg A. 12 - Advanced oxidation processes for industrial effluent treatment. Shah MPBT-AOP for ETP. Elsevier, 2021:255–272.10.1016/B978-0-12-821011-6.00012-8
  6. [6] Ravelli D., et al. Titanium dioxide photocatalysis: An assessment of the environmental compatibility for the case of the functionalization of heterocyclics. Applied Catalysis B: Environmental 2010:99(3–4):442–447. https://doi.org/10.1016/j.apcatb.2010.05.01010.1016/j.apcatb.2010.05.010
  7. [7] Kuliesiene N., et al. TiO2Application for the Photocatalytical Inactivation of S. enterica, E. coli and M. luteus Bacteria Mixtures. Environmental and Climate Technologies 2020:24(3):418–429. https://doi.org/10.2478/rtuect-2020-011310.2478/rtuect-2020-0113
  8. [8] Sakalauskaite S., et al. Potential and Risk of the Visible Light Assisted Photocatalytical Treatment of PRD1 and T4 Bacteriophage Mixtures. Environmental and Climate Technologies 2020:24(3):215–224. https://doi.org/10.2478/rtuect-2020-009810.2478/rtuect-2020-0098
  9. [9] Varnagiris S., et al. Black carbon-doped TiO2 films: Synthesis, characterization and photocatalysis. Journal of Photochemistry and Photobiology A: Chemistry 2019:382:111941. https://doi.org/10.1016/J.JPHOTOCHEM.2019.11194110.1016/j.jphotochem.2019.111941
  10. [10] ISO 10678:2010. Fine ceramics (advanced ceramics, advanced technical ceramics) — Determination of photocatalytic activity of surfaces in an aqueous medium by degradation of methylene blue.
  11. [11] Ohtani B., et al. What is Degussa (Evonik) P25? Crystalline composition analysis, reconstruction from isolated pure particles and photocatalytic activity test. Journal of Photochemistry and Photobiology A: Chemistry 2010:216(2):179–182. https://doi.org/10.1016/j.jphotochem.2010.07.02410.1016/j.jphotochem.2010.07.024
  12. [12] Sigma-Aldrich. P25 TiO2 Product Specification [Online]. [Accessed 5.02.2021]. Available: https://www.sigmaaldrich.com/specification-sheets/298/090/718467-BULK_______ALDRICH__.pdf
  13. [13] Foster H. A., et al. Photocatalytic disinfection using titanium dioxide: Spectrum and mechanism of antimicrobial activity. Applied Microbiology and Biotechnology 2011:90(6):1847–1868. https://doi.org/10.1007/s00253-011-3213-710.1007/s00253-011-3213-7707986721523480
  14. [14] Bondarenko O. M., et al. Plasma membrane is the target of rapid antibacterial action of silver nanoparticles in Escherichia coli and Pseudomonas aeruginosa. International Journal of Nanomedicine 2018:13:6779–6790. https://doi.org/10.2147/IJN.S17716310.2147/IJN.S177163620727030498344
  15. [15] Verdier T., et al. Antibacterial activity of TiO2 photocatalyst alone or in coatings on E. coli: The influence of methodological aspects. Coatings 2014:4(3):670–686. https://doi.org/10.3390/coatings403067010.3390/coatings4030670
  16. [16] Castro-Alférez M., Polo-López M. I., Fernández-Ibáñez P. Intracellular mechanisms of solar water disinfection. Scientific Reports 2016:6:1–10. https://doi.org/10.1038/srep3814510.1038/srep38145513360327909341
  17. [17] Zhao J., Riediker M. Detecting the oxidative reactivity of nanoparticles: A new protocol for reducing artifacts. Journal of Nanoparticle Research 2014:16(7):2493. https://doi.org/10.1007/s11051-014-2493-010.1007/s11051-014-2493-0409224025076842
  18. [18] Daugelavicius R., Bakiene E., Bamford D. H. Stages of polymyxin B interaction with the Escherichia coli cell envelope. Antimicrobial Agents and Chemotherapy 2000:44(11):2969–2978. https://doi.org/10.1128/AAC.44.11.2969-2978.200010.1128/AAC.44.11.2969-2978.200010158811036008
  19. [19] Kim M. J., Yuk H. G. Antibacterial Mechanism of 405-Nanometer Light-Emitting Diode Against Salmonella at Refrigeration Temperature. Applied and Environmental Microbiology 2017:83(5):1–14. https://doi.org/10.1128/AEM.02582-1610.1128/AEM.02582-16531141728003197
  20. [20] Teelucksingh T., Thompson L. K., Cox G. The evolutionary conservation of escherichia coli drug efflux pumps supports physiological functions. Journal of Bacteriology 2020:202(22). https://doi.org/10.1128/JB.00367-2010.1128/JB.00367-20758505732839176
  21. [21] Giannelli M., et al. Effects of photodynamic laser and violet-blue led irradiation on Staphylococcus aureus biofilm and Escherichia coli lipopolysaccharide attached to moderately rough titanium surface: in vitro study. Lasers in Medical Science 2017:32(4):857–864. https://doi.org/10.1007/s10103-017-2185-y10.1007/s10103-017-2185-y28283813
  22. [22] Lipovsky A., et al. Visible light-induced killing of bacteria as a function of wavelength: Implication for wound healing. Lasers in Surgery and Medicine 2010:42(6):467–472. https://doi.org/10.1002/lsm.2094810.1002/lsm.2094820662022
  23. [23] Suyama Y., et al. Effects of light sources and visible light-activated titanium dioxide photocatalyst on bleaching. Dental Materials Journal 2009:28(6):693–699. https://doi.org/10.4012/dmj.28.69310.4012/dmj.28.69320019420
DOI: https://doi.org/10.2478/rtuect-2021-0074 | Journal eISSN: 2255-8837 | Journal ISSN: 1691-5208
Language: English
Page range: 978 - 989
Published on: Nov 19, 2021
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2021 Deimante Vasiliauske, Sandra Sakalauskaite, Neringa Kuliesiene, Simona Tuckute, Marius Urbonavicius, Sarunas Varnagiris, Rimantas Daugelavicius, Martynas Lelis, published by Riga Technical University
This work is licensed under the Creative Commons Attribution 4.0 License.