Have a personal or library account? Click to login
Mechanical Properties of Alkali Activated Material Based on Red Clay and Silica Gel Precursor Cover

Mechanical Properties of Alkali Activated Material Based on Red Clay and Silica Gel Precursor

Open Access
|Nov 2021

References

  1. [1] Podolsky Z., et al. State of the art on the application of waste materials in geopolymer concrete. Case Stud. Constr. Mater. 2021:15:e00637. https://doi.org/10.1016/j.cscm.2021.e0063710.1016/j.cscm.2021.e00637
  2. [2] Vaičiukynienė D., et al. Porous alkali-activated materials based on municipal solid waste incineration ash with addition of phosphogypsum powder. Constr. Build. Mater. 2021:301:123962. https://doi.org/10.1016/j.conbuildmat.2021.12396210.1016/j.conbuildmat.2021.123962
  3. [3] Bajpai R., et al. Environmental impact assessment of fly ash and silica fume based geopolymer concrete. J. Clean. Prod. 2020:254:120147. https://doi.org/10.1016/j.jclepro.2020.12014710.1016/j.jclepro.2020.120147
  4. [4] Vegere K., et al. Alkali-activated metakaolin as a zeolite-like binder for the production of adsorbents. Inorganics 2019:7(12):141. https://doi.org/10.3390/inorganics712014110.3390/inorganics7120141
  5. [5] Bocullo V., et al. The influence of the SiO2/Na2O ratio on the low calcium alkali activated binder based on fly ash. Mater. Chem. Phys. 2021:258:123846. https://doi.org/10.1016/j.matchemphys.2020.12384610.1016/j.matchemphys.2020.123846
  6. [6] Gailitis R., et al. Long-Term Deformation Properties of a Carbon-Fiber-Reinforced Alkali-Activated Cement Composite. Mech. Compos. Mater. 2020:56(1):85–92. https://doi.org/10.1007/s11029-020-09862-w10.1007/s11029-020-09862-w
  7. [7] Dietel J., et al. The importance of specific surface area in the geopolymerization of heated illitic clay. Appl. Clay Sci. 2017:139:99–107. https://doi.org/10.1016/j.clay.2017.01.00110.1016/j.clay.2017.01.001
  8. [8] Azevedo A. R. G., et al. Potential use of ceramic waste as precursor in the geopolymerization reaction for the production of ceramic roof tiles. J. Build. Eng. 2020:29:101156. https://doi.org/10.1016/j.jobe.2019.10115610.1016/j.jobe.2019.101156
  9. [9] Borg R. P.. et al. Alkali-Activated Material Based on Red Clay and Silica Gel Waste. W. Bio. Val. 2020:11(6):2973– 2982. https://doi.org/10.1007/s12649-018-00559-910.1007/s12649-018-00559-9
  10. [10] Choeycharoen P., et al. Superior properties and structural analysis of geopolymer synthesized from red clay. Chiang Mai J. Sci. 2019:46(6):1234–1248.
  11. [11] Ounissi C., et al. Potential use of Kebilian clay reserves ( southern Tunisia ) for the production of geopolymer materials. Clay Miner. 2020:55(2):101–111. https://doi.org/10.1180/clm.2020.1410.1180/clm.2020.14
  12. [12] Mohammed S. Processing, effect and reactivity assessment of artificial pozzolans obtained from clays and clay wastes: A review. Cons. Buil. Mat. 2017:140:10–19. https://doi.org/10.1016/j.conbuildmat.2017.02.07810.1016/j.conbuildmat.2017.02.078
  13. [13] Hu N., et al. The influence of alkali activator type, curing temperature and gibbsite on the geopolymerization of an interstratified illite-smectite rich clay from Friedland. Appl. Clay Sci. 2017:135:386–393. https://doi.org/10.1016/j.clay.2016.10.02110.1016/j.clay.2016.10.021
  14. [14] Eliche-Quesada D., et al. Effects of an Illite Clay Substitution on Geopolymer Synthesis as an Alternative to Metakaolin. J. Mater. Civ. Eng. 2021:33(5):04021072. https://doi.org/10.1061/(ASCE)MT.1943-5533.000369010.1061/(ASCE)MT.1943-5533.0003690
  15. [15] Sedmale G., et al. Application of differently treated illite and illite clay samples for the development of ceramics. Appl. Clay Sci. 2017:146:397–403. https://doi.org/10.1016/j.clay.2017.06.01610.1016/j.clay.2017.06.016
  16. [16] Emmerich K. Thermal analysis in the characterization and processing of industrial minerals. European Mineralogical Union Notes In Mineralogy 2011:9(1):129–170. https://doi.org/10.1180/EMU-notes.9.510.1180/EMU-notes.9.5
  17. [17] Keppert M., et al. Red-clay ceramic powders as geopolymer precursors: Consideration of amorphous portion and CaO content. Appl. Clay Sci. 2018:161:82–89. https://doi.org/10.1016/j.clay.2018.04.01910.1016/j.clay.2018.04.019
  18. [18] Vitola L., et al. Low-calcium, porous, alkali-activated materials as novel pH stabilizers for water media. Minerals 2020:10(11):935. https://doi.org/10.3390/min1011093510.3390/min10110935
  19. [19] Vaičiukyniene D., et al. Utilization of by-product waste silica in concrete - based materials. Mater. Res. 2012:15(4):561–567. https://doi.org/10.1590/S1516-1439201200500008210.1590/S1516-14392012005000082
  20. [20] Rudelis V., et al. The prospective approach for the reduction of fluoride ions mobility in industrial waste by creating products of commercial value. Sustain. 2019:11(3):16–18. https://doi.org/10.3390/su1103063410.3390/su11030634
  21. [21] Rattanasak U., Chindaprasirt P. Influence of NaOH solution on the synthesis of fly ash geopolymer. Miner. Eng. 2009:22(12):1073–1078. https://doi.org/10.1016/j.mineng.2009.03.02210.1016/j.mineng.2009.03.022
  22. [22] Delgado-Plana P., et al. Effect of activating solution modulus on the synthesis of sustainable geopolymer binders using spent oil bleaching earths as precursor. Sustain. 2021:13(13):7501. https://doi.org/10.3390/su1313750110.3390/su13137501
  23. [23] Conconi M. S., et al. Thermal behavior (TG-DTA-TMA), sintering and properties of a kaolinitic clay from Buenos Aires Province, Argentina. Ceramica 2019:65(374):227–235. https://doi.org/10.1590/0366-6913201965374262110.1590/0366-69132019653742621
  24. [24] Bumanis G., Bajare D., Korjakins A. Influence of the carbonate-free clay calcination temperature and curing conditions on the properties of alkali-activated mortar. Proc. International Scientific Conference “Innovative Materials, Structures and Technologies” 2014. https://doi.org/10.7250/iscconstrs.2014.0410.7250/iscconstrs.2014.04
  25. [25] Ntah Z. L. E., et al. Characterization of some archaeological ceramics and clay samples from Zamala -Far-northern part of Cameroon (West Central Africa). Ceramica 2017:63(367):413–422.10.1590/0366-69132017633672192
  26. [26] Bumanis G., Goljandin D., Bajare D. The properties of mineral additives obtained by collision milling in disintegrator. Key Engineering Materials 2017:721:327–331. https://doi.org/10.4028/www.scientific.net/KEM.721.32710.4028/www.scientific.net/KEM.721.327
  27. [27] Zhang Z., et al. Efflorescence : A Critical Challenge for Geopolymer Applications? Proc. Concr. Inst. Aust. Bienn. Natl. Conf. 2013.
  28. [28] Sen Lv X., et al. Inhibition of Efflorescence in Na-Based Geopolymer Inorganic Coating. ACS Omega 2020:5(24):14822–14830. https://doi.org/10.1021/acsomega.0c0191910.1021/acsomega.0c01919731560232596620
  29. [29] Bumanis G., Bajare D., Locs J. The effect of activator on the properties of low-calcium alkali-activated mortars. Key Eng. Mater. 2014:604:169–172. https://doi.org/10.4028/www.scientific.net/KEM.604.16910.4028/www.scientific.net/KEM.604.169
  30. [30] Krahl T., Kemnitz E. Aluminium fluoride – the strongest solid Lewis acid: structure and reactivity. Catal. Sci. Technol. 2017:7(4):773–796. https://doi.org/10.1039/C6CY02369J10.1039/C6CY02369J
  31. [31] Borg R. P., et al. Preliminary investigation of geopolymer binder from waste materials. Rev. Rom. Mater. Rom. J. Mater. 2017:47(3):370–378.
DOI: https://doi.org/10.2478/rtuect-2021-0070 | Journal eISSN: 2255-8837 | Journal ISSN: 1691-5208
Language: English
Page range: 931 - 943
Published on: Nov 15, 2021
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2021 Girts Bumanis, Danute Vaiciukyniene, published by Riga Technical University
This work is licensed under the Creative Commons Attribution 4.0 License.