Have a personal or library account? Click to login
Modelling the Combined Heat and Power Plants with Steam Turbines in the Study of Energy Security Problems Cover

Modelling the Combined Heat and Power Plants with Steam Turbines in the Study of Energy Security Problems

Open Access
|Nov 2021

References

  1. [1] Bushuyev V., Voropai N., Masterpanov A., Shafranik Yu. Energeticheskaja bezopasnostj Rossii (Energy security of Russia.). Moscow: 1998. (in Russian)
  2. [2] Pyatkova N., Senderov S., Cheltsov M. Application of a two-level technology for research in solving energy security problems. Izvestiya RAN. Power Engineering 2000:6:31–39.
  3. [3] Smirnova E., Senderov S. Energy security problems at the regional level: situation analysis and main trends. E3S Web Conferences 2019:77:01009 https://doi.org/10.1051/e3sconf/2019770100910.1051/e3sconf/20197701009
  4. [4] Voropai N. I. Sistemnie issledovanija v energetike. Retrospektiva nauchnih napravlenij (Energy Systems Institute schools of thought in hindsight.). Novosibirsk: Nauka, 2010. (in Russian)
  5. [5] Belyaev L. S., et al. Metodi issledovanija i upravlenija sistemami energetiki (Methods of analysis and control of energy systems.). Novosibirsk: Nauka, 1987. (in Russian)
  6. [6] Antonov G. N., et al. Metodi i modeli issledovanija zhivuchesti sistem energetiki (Methods and models for studying the survivability of energy systems.). Novosibirsk: Nauka, 1990. (in Russian)
  7. [7] Yang S., et al. A two-stage optimization model for Park Integrated Energy System operation and benefit allocation considering the effect of Time-Of-Use energy price. Energy 2020:195:117013. https://doi.org/10.1016/j.energy.2020.11701310.1016/j.energy.2020.117013
  8. [8] Wu D., et al. Comparative study of optimization method and optimal operation strategy for multiscenario integrated energy system. Energy 2020:217:119311. https://doi.org/10.1016/j.energy.2020.119311.10.1016/j.energy.2020.119311
  9. [9] Luo F., et al. Research on optimal allocation strategy of multiple energy storage in regional integrated energy system based on operation benefit increment. International Journal of Electrical Power & Energy Systems 2021:125:106376. https://doi.org/10.1016/j.ijepes.2020.10637610.1016/j.ijepes.2020.106376
  10. [10] Li P., et al. Hierarchically partitioned coordinated operation of distributed integrated energy system based on a master-slave game. Energy 2021:214:119006. https://doi.org/10.1016/j.energy.2020.11900610.1016/j.energy.2020.119006
  11. [11] Qin C., et al. Weighted directed graph based matrix modelling of integrated energy systems. Energy 2021:214:118886. https://doi.org/10.1016/j.energy.2020.118886.10.1016/j.energy.2020.118886
  12. [12] Chamandoust H., et al. Multi-objectives Optimal Scheduling in Smart Energy Hub System with Electrical and Thermal Responsive Loads. Environmental and Climate Technologies 2020:24(1):209–232. https://doi.org/10.2478/rtuect-2020-001310.2478/rtuect-2020-0013
  13. [13] Gravelsins A., et al. Power Sector Flexibility through Power-to-Heat and Power-to-Gas Application – System Dynamics Approach. Environmental and Climate Technologies 2019:23(3):319–332. https://doi.org/10.2478/rtuect-2019-009810.2478/rtuect-2019-0098
  14. [14] Chamandoust H., Peyvand N. Energy Economic Management of Hybrid Energy System Based on Short-term Generation and Demand Response. Environmental and Climate Technologies 2020:24(1):653–668. https://doi.org/10.2478/rtuect-2020-004010.2478/rtuect-2020-0040
  15. [15] Koch K., Höfner P., Gaderer M. Techno-economic system comparison of a wood gas and a natural gas CHP plant in flexible district heating with a dynamic simulation model. Energy 2020:202:117710. https://doi.org/10.1016/j.energy.2020.11771010.1016/j.energy.2020.117710
  16. [16] Lai F., et al. Operation optimization on the large-scale CHP station composed of multiple CHP units and a thermocline heat storage tank. Energy Conversion and Management 202:211:112767. https://doi.org/10.1016/j.enconman.2020.11276710.1016/j.enconman.2020.112767
  17. [17] Liu M., Wang S., Yan J. Operation scheduling of a coal-fired CHP station integrated with power-to-heat devices with detail CHP unit models by particle swarm optimization algorithm. Energy 2021:214:119022. https://doi.org/10.1016/j.energy.2020.11902210.1016/j.energy.2020.119022
  18. [18] Qian Z., Agnew B. An assessment of Horlock’s approximate analysis of feed and district heating cycles for steam and CHP plant. Thermal Science and Engineering Progress 2021:22:100746. https://doi.org/10.1016/j.tsep.2020.10074610.1016/j.tsep.2020.100746
  19. [19] Santos M., et al. Design and modelling of a small scale biomass-fueled CHP system based on Rankine technology. Energy Procedia 2017:129:676–683. https://doi.org/10.1016/j.egypro.2017.09.14310.1016/j.egypro.2017.09.143
  20. [20] Baccioli A., et al. Potential energy recovery by integrating an ORC in a biogas plant. Applied Energy 2019:256:113960. https://doi.org/10.1016/j.apenergy.2019.11396010.1016/j.apenergy.2019.113960
  21. [21] Wang Y., et al. Analysis of a biogas-fed SOFC CHP system based on multi-scale hierarchical modelling. Renewable Energy 2021:163:78–87. https://doi.org/10.1016/j.renene.2020.08.09110.1016/j.renene.2020.08.091
  22. [22] Horlock J. H. Approximate analyses of feed and district heating cycles for steam combined heat and power plant. Proceedings of the Institution of Mechanical Engineers 1987:201:A3. https://doi.org/10.1243%2FPIME_PROC_1987_201_024_0210.1243/PIME_PROC_1987_201_024_02
  23. [23] Zorkaltsev V. I. Methods of forecasting and analysis of fuel supply system efficiency. Moscow: Nauka, 1988.
  24. [24] Rudenko Yu. N. (ed.). Nadjozhnostj sistem energetiki i ih oborudovanija (Reliability of energy systems and their equipment.). Moscow: Energoatomizdat, 1994. (in Russian)
  25. [25] Beresneva N. M., Pyatkova N. I. Features of Critical Facilities Determining for the Fuel and Energy Complex in Research of Fuel and Energy Supply. E3S web of conferences 2020:209:06001. https://doi.org/10.1051/e3sconf/20202090600110.1051/e3sconf/202020906001
  26. [26] Kozlov M. V., A. et al. Upravlenie topivno-energeticheskoj sistemoj pri krupnomashtabnih povrezhdenijah. I. Setevaja modelj I programmnaja realizacija (The fuel and energy system control in the event of large-scale damages. I. A network model and its software implementation.). Izv. RAN. Teoriya i sistemy upravleniya, 2017:6:50–73. (in Russian)10.1134/S1064230717060090
  27. [27] Belyaev L. S., Rudenko Yu. N. (ed.). Teoreticheskie osnovi sistemnih isledovanij v energetike (Theoretical foundations of energy systems research.). Novosibirsk: Nauka, 1986. (in Russian)
  28. [28] Popyrin L. S., Samusev V. I., Epelyptein V. V. Avtomatizacija matematicheskogo modelirovanija teploenergeticheskih ustanovok (Automation of mathematical modelling of thermal power plants.). Moscow: Nauka, 1981. (in Russian)
  29. [29] Vulman F. A., Koryagin A. V., Krivoshey M. Z. Matematicheskoe modelirovanie teplovih shem paroturbinnih ustanovok (Computer-based mathematical modelling of steam turbine plants cycles.). Moscow: Mashinostroienie, 1985. (in Russian)
  30. [30] Rivkin S. L., Alexandrov A. A. Termodinamicheskie svojstva vodi i vodjanogo para: Spravochnik (Thermodynamic properties of water and water vapor: a handbook.). Moscow: Energoatomizdat, 1984. (in Russian)
  31. [31] Grigorieva V. A., Zorina V. M. (ed.). Thermal and nuclear power plants: a handbook. Moscow: Energoatomizdat, 1989.
  32. [32] RD 34.30.711 Tipovaja normativnaja harakteristika turboagregata PT-60-130/13 LMZ (Type performance standard of pt-60-130/13 lmz turbine unit.). Moscow: USSR Ministry of Energy, 1974. (in Russian)
  33. [33] Wolfram Mathematica [Online]. [Accessed 12.03.2021]. Available https://www.wolfram.com/mathematica/
DOI: https://doi.org/10.2478/rtuect-2021-0061 | Journal eISSN: 2255-8837 | Journal ISSN: 1691-5208
Language: English
Page range: 816 - 828
Published on: Nov 3, 2021
Published by: Riga Technical University
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2021 Victoria Piskunova, Dmitry Krupenev, Egor Krupenev, Natalia Pyatkova, published by Riga Technical University
This work is licensed under the Creative Commons Attribution 4.0 License.