Have a personal or library account? Click to login

Biomass Waste Processing into Artificial Humic Substances

Open Access
|Oct 2021

References

  1. [1] Tan K. H. Humic matter in soils and the environment. Principles and controversies. Boca Raton: CRC Press, 2014.
  2. [2] Steinberg C. E. Ecology of humic substances in freshwaters. Berlin: Springer, 200310.1007/978-3-662-06815-1
  3. [3] Sire J., Klavins M., Purmalis O., Melecis V. Experimental study of peat humification indicators. Proceedings of the Latvian Academy of Sciences. Section B. Natural, Exact and Applied Sciences 2008:62:18–26. https://doi.org/10.2478/v10046-008-0009-y10.2478/v10046-008-0009-y
  4. [4] Suddarth S. R., et al. Can humic substances improve soil fertility under salt stress and drought conditions? Journal of Environmental Quality 2019:48(6):1605–1613. https://doi.org/10.2134/jeq2019.02.007110.2134/jeq2019.02.0071
  5. [5] Canellas L. P., et al. Humic and fulvic acids as biostimulants in horticulture. Scientia Horticulturae 2015:196:15–27. https://doi.org/10.1016/j.scienta.2015.09.01310.1016/j.scienta.2015.09.013
  6. [6] Mullen R. W., Thomason W. E., Raun W. R. Estimated increase in atmospheric carbon dioxide due to worldwide decrease in soil organic matter. Communications in Soil Science and Plant Analysis 1999:30(11–12):1713–1719. https://doi.org/10.1080/0010362990937032410.1080/00103629909370324
  7. [7] Klavins M., et al. A comparative study of the properties of industrially produced humic substances. Agronomy Research 2020:18(3):2076–2086. https://doi.org/10.15159/AR.20.185
  8. [8] Stenmarck A., et al. Estimates of European food waste levels. Stockholm: EC, 2016.
  9. [9] Titirici M. M., Thomas A., Antonietti M. Back in the black: hydrothermal carbonization of plant material as an efficient chemical process to treat the CO2 problem? New Journal of Chemistry 2007:31(6):787–789. https://doi.org/10.1039/B616045J10.1039/b616045j
  10. [10] Yang, F., Antonietti, M. Artificial humic acids: sustainable materials against climate change. Advanced Science 2020:7(5):1–7. https://doi.org/10.1002/advs.20190299210.1002/advs.201902992705556332154079
  11. [11] Zhang S., et al. Efficient phosphorus recycling and heavy metal removal from wastewater sludge by a novel hydrothermal humification-technique. Chemical Engineering Journal 2020:394(1):124832. https://doi.org/10.1016/j.cej.2020.12483210.1016/j.cej.2020.124832
  12. [12] Yang F., et al. Conjugation of artificial humic acids with inorganic soil matter to restore land for improved conservation of water and nutrients. Land Degradation & Development 2020:31(7):884–893. https://doi.org/10.1002/ldr.348610.1002/ldr.3486
  13. [13] Yang F., et al. A hydrothermal process to turn waste biomass into artificial fulvic and humic acids for soil remediation. Science of the Total Environment 2019:686:1140–1151. https://doi.org/10.1016/j.scitotenv.2019.06.04510.1016/j.scitotenv.2019.06.04531412510
  14. [14] Remón J., et al. Production of fermentable species by microwave-assisted hydrothermal treatment of biomass carbohydrates: reactivity and fermentability assessments. Green Chemistry 2018:20(19):4507–4520.10.1039/C8GC02182A
  15. [15] Grönroos A., Pirkonen P. Ruppert O. Ultrasonic depolymerization of aqueous carboxymethylcellulose. Ultrasonics Sonochemistry 2004:11(1):9–12. https://doi.org/10.1039/c8gc02182a10.1039/C8GC02182A
  16. [16] Yang F., et al. One-step fabrication of artificial humic acid-functionalized colloid-like magnetic biochar for rapid heavy metal removal. Bioresource Technology 2021:328:124825. https://doi.org/10.1016/j.biortech.2021.12482510.1016/j.biortech.2021.12482533609885
  17. [17] Shen Y. A review on hydrothermal carbonization of biomass and plastic wastes to energy products. Biomass and Bioenergy 2020:134:105479. https://doi.org/10.1016/j.biombioe.2020.10547910.1016/j.biombioe.2020.105479
  18. [18] Du Q., et al. Activation of porous magnetized biochar by artificial humic acid for effective removal of lead ions. Journal of Hazardous Materials 2020:389:122115. https://doi.org/10.1016/j.jhazmat.2020.12211510.1016/j.jhazmat.2020.12211532006936
  19. [19] Tang C., et al. Artificial humic substances improve microbial activity for binding CO2. iScience 2021:42(6):102647. https://doi.org/10.1016/j.isci.2021.10264710.1016/j.isci.2021.102647838757134466779
  20. [20] Antonietti M., et al. Tackling the World’s Phosphate Problem: Synthetic Humic Acids solubilize otherwise insoluble Phosphates for Fertilization. Angewandte Chemie, International Edition in English 2019:58(52):8813–18816. https://doi.org/10.1002/anie.20191106010.1002/anie.201911060697312331621138
  21. [21] Zhao L., et al. Nitrogen-containing hydrothermal carbons with superior performance in supercapacitors. Advanced materials 2010:22(45):5202-5206. https://doi.org/10.1002/adma.20100264710.1002/adma.20100264720862714
  22. [22] Dos Santos J. V., et al. Humic-like acids from hydrochars: Study of the metal complexation properties compared with humic acids from anthropogenic soils using PARAFAC and time-resolved fluorescence. Science of the Total Environment 2020:722:137815. https://doi.org/10.1016/j.scitotenv.2020.13781510.1016/j.scitotenv.2020.13781532179299
  23. [23] Yang F., Tang C., Antonietti M. Natural and artificial humic substances to manage minerals, ions, water, and soil microorganisms. Chemical Society Reviews 2021:50:6221–6239. https://doi.org/10.1039/D0CS01363C10.1039/D0CS01363C
DOI: https://doi.org/10.2478/rtuect-2021-0047 | Journal eISSN: 2255-8837 | Journal ISSN: 1691-5208
Language: English
Page range: 631 - 639
Published on: Oct 5, 2021
Published by: Riga Technical University
In partnership with: Paradigm Publishing Services
Publication frequency: 2 times per year

© 2021 Maris Klavins, Linda Ansone-Bertina, Lauris Arbidans, Linards Klavins, published by Riga Technical University
This work is licensed under the Creative Commons Attribution 4.0 License.