Have a personal or library account? Click to login

Experimental Investigation and Prediction of Charging/Discharging Performance of Phase Change Material based Thermal Energy Storage Unit

Open Access
|Sep 2021

References

  1. [1] Calderón A., et al. Where is Thermal Energy Storage (TES) research going? – A bibliometric analysis. Solar Energy 2020:200:37–50. https://doi.org/10.1016/j.solener.2019.01.05010.1016/j.solener.2019.01.050
  2. [2] Nazir H., et al. Recent developments in phase change materials for energy storage applications: A review. International Journal of Heat and Mass Transfer 2019:129:491–523. https://doi.org/10.1016/j.ijheatmasstransfer.2018.09.12610.1016/j.ijheatmasstransfer.2018.09.126
  3. [3] Zondag H. A., et al. Performance analysis of industrial PCM heat storage lab prototype. Journal of Energy Storage 2018:18:402–413. https://doi.org/10.1016/j.est.2018.05.00710.1016/j.est.2018.05.007
  4. [4] Zauner C., et al. Experimental characterization and simulation of a hybrid sensible-latent heat storage. Applied Energy 2017:189:506–519. https://doi.org/10.1016/j.apenergy.2016.12.07910.1016/j.apenergy.2016.12.079
  5. [5] Dzikevics M., Veidenbergs I., Valančius K. Sensitivity Analysis of Packed Bed Phase Change Material Thermal Storage for Domestic Solar Thermal System. Environmental and Climate Technologies 2020:24:378–391. https://doi.org/10.2478/rtuect-2020-002210.2478/rtuect-2020-0022
  6. [6] Mahdi J. M., Lohrasbi S., Nsofor E. C. Hybrid heat transfer enhancement for latent-heat thermal energy storage systems: A review. International Journal of Heat and Mass Transfer 2019:137:630–649. https://doi.org/10.1016/j.ijheatmasstransfer.2019.03.11110.1016/j.ijheatmasstransfer.2019.03.111
  7. [7] Zayed M. E., et al. Recent progress in phase change materials storage containers: Geometries, design considerations and heat transfer improvement methods. Journal of Energy Storage 2020:30:101341. https://doi.org/10.1016/j.est.2020.10134110.1016/j.est.2020.101341
  8. [8] Besagni G., Croci L. Experimental study of a pilot-scale fin-and-tube phase change material storage. Applied Thermal Engineering 2019:160:114089. https://doi.org/10.1016/j.applthermaleng.2019.11408910.1016/j.applthermaleng.2019.114089
  9. [9] Kabbara M., Groulx D., Joseph A. Experimental investigations of a latent heat energy storage unit using finned tubes. Applied Thermal Engineering 2016:101:601–611. https://doi.org/10.1016/j.applthermaleng.2015.12.08010.1016/j.applthermaleng.2015.12.080
  10. [10] Nóbrega C. R. E. S., Ismail K. A. R., Lino F. A. M. Correlations for predicting the performance of axial finned tubes submersed in PCM. Journal of Energy Storage 2019:26:100973. https://doi.org/10.1016/j.est.2019.10097310.1016/j.est.2019.100973
  11. [11] Mahdi M. S., et al. Numerical study and experimental validation of the effects of orientation and configuration on melting in a latent heat thermal storage unit. Journal of Energy Storage 2019:23:456–468. https://doi.org/10.1016/j.est.2019.04.01310.1016/j.est.2019.04.013
  12. [12] Yu X., et al. Sensitivity analysis of thermophysical properties on PCM selection under steady and fluctuating heat sources: A comparative study. Applied Thermal Engineering 2021:186:116527. https://doi.org/10.1016/j.applthermaleng.2020.11652710.1016/j.applthermaleng.2020.116527
  13. [13] Yu C., et al. Charging performance optimization of a latent heat storage unit with fractal tree-like fins. Journal of Energy Storage 220:30:101498. https://doi.org/10.1016/j.est.2020.10149810.1016/j.est.2020.101498
  14. [14] Sciacovelli A., Gagliardi F., Verda V. Maximization of performance of a PCM latent heat storage system with innovative fins. Applied Energy 2015:137:707–715. https://doi.org/10.1016/j.apenergy.2014.07.01510.1016/j.apenergy.2014.07.015
  15. [15] Rubitherm Technologies GmbH. Data sheet RT82 [Online]. [Accessed 20.01.2021]. Available: https://www.rubitherm.eu/media/products/datasheets/Techdata_-RT82_EN_09102020.PDF
  16. [16] Pakalka S., Valančius K., Streckienė G. Experimental comparison of the operation of PCM-based copper heat exchangers with different configurations. Applied Thermal Engineering 2020:172:115138. https://doi.org/10.1016/j.applthermaleng.2020.11513810.1016/j.applthermaleng.2020.115138
  17. [17] Pakalka S., Valančius K., Streckienė G. Experimental and Theoretical Investigation of the Natural Convection Heat Transfer Coefficient in Phase Change Material (PCM) Based Fin-and-Tube Heat Exchanger. Energies 2021:14(3):716. https://doi.org/10.3390/en1403071610.3390/en14030716
  18. [18] Pakalka S., Valančius K., Damonskis M. Effect of Open and Closed Operation Modes on the Performance of Phase Change Material Based Copper Heat Exchanger. Presented at the 11th International Conference on Environmental Engineering, Vilnius, Lithuania, 2020. https://doi.org/10.3846/enviro.2020.61110.3846/enviro.2020.611
DOI: https://doi.org/10.2478/rtuect-2021-0044 | Journal eISSN: 2255-8837 | Journal ISSN: 1691-5208
Language: English
Page range: 600 - 609
Published on: Sep 30, 2021
Published by: Riga Technical University
In partnership with: Paradigm Publishing Services
Publication frequency: 2 times per year

© 2021 Saulius Pakalka, Kęstutis Valančius, published by Riga Technical University
This work is licensed under the Creative Commons Attribution 4.0 License.