Have a personal or library account? Click to login

Capture, Storage and Utilization of Carbon Dioxide by Microalgae and Production of Biomaterials

Open Access
|Sep 2021

References

  1. [1] Copernicus. Press releases. Copernicus: 2020 warmest year on record for Europe; globally, 2020 ties with 2016 for warmest year recorded. [Online]. Available: https://climate.copernicus.eu/2020-warmest-year-record-europe-globally-2020-ties-2016-warmest-year-recorded
  2. [2] Kumar M., Sundaram S., Gnansounou E., Larroche C., Thakura I.S. Carbon dioxide capture, storage and production of biofuel and biomaterials by bacteria: A review. Bioresource Technology 2018:247:1059–1068. https://doi.org/10.1016/j.biortech.2017.09.05010.1016/j.biortech.2017.09.05028951132
  3. [3] Thakur I. S., Kumar M., Varjanib S. J., Wu Y., Gnansounou E., Ravindran S. Sequestration and utilization of carbon dioxide by chemical and biological methods for biofuels and biomaterials by chemoautotrophs: Opportunities and challenges. Bioresource Technology 2018:256:478–490. https://doi.org/10.1016/j.biortech.2018.02.03910.1016/j.biortech.2018.02.03929459105
  4. [4] Wilberforce T., Baroutaji A., Soudan B., Hai Al-Alami A., Ghani Olabi A. Outlook of carbon capture technology and challenges. Science of The Total Environment 2019:657:56–72. https://doi.org/10.1016/j.scitotenv.2018.11.42410.1016/j.scitotenv.2018.11.42430530219
  5. [5] Rashidi N. A., Yusup S. An overview of activated carbons utilization for the post-combustion carbon dioxide capture. Journal of CO2 Utilization 2016:13:1–16. https://doi.org/10.1016/j.jcou.2015.11.00210.1016/j.jcou.2015.11.002
  6. [6] Herzog H., Meldon J., Hatton A. Advanced post-combustion CO2 capture, Clean Air Task Force report 2009:1–39. Available: https://www.researchgate.net/publication/265454631_Advanced_Post-Combustion_CO_2_Capture
  7. [7] Wahby A., Silvestre-Albero J., Sepúlveda-Escribano A., Rodríguez-Reinoso F. CO2 adsorption on carbon molecular sieves. Microporous and Mesoporous Materials 2012:164:280–287. https://doi.org/10.1016/j.micromeso.2012.06.03410.1016/j.micromeso.2012.06.034
  8. [8] Khalilpour R., Mumford K., Zhai H., Abbas A., Stevens G., Rubin E. S. Membrane-based carbon capture from flue gas: a review. Journal of Cleaner Production 2015:103:286–300. https://doi.org/10.1016/j.jclepro.2014.10.05010.1016/j.jclepro.2014.10.050
  9. [9] Strong A., Chisholm S., Miller C., Cullen J. Ocean fertilization: time to move on. Nature 2009:461:347–348. https://doi.org/10.1038/461347a10.1038/461347a19759603
  10. [10] Singh J., Dhar D. W. Overview of Carbon Capture Technology: Microalgal Biorefinery Concept and State-of-the- Art. Frontiers in Marine Science 2019:6:29. https://doi.org/10.3389/fmars.2019.0002910.3389/fmars.2019.00029
  11. [11] Steffens L., Pettinato E., Steiner T. M., Mall A., König S., Eisenreich W., Berg I. A. High CO2 levels drive the TCA cycle backwards towards autotrophy. Nature 2021:592:784–788. https://doi.org/10.1038/s41586-021-03456-910.1038/s41586-021-03456-933883741
  12. [12] Trentini M., Lorenzon M., Conti F. Biotechnology to investigate the microbial community responsible of biogas production frpm biomass. European Biomass Conference and Exhibition Proceedings 2018:816–820. https://doi.org/10.5071/26thEUBCE2018-2CV.5.35
  13. [13] Castellan N., Conti F. Molecular biotechnology to improve biofuel production from biomass. European Biomass Conference and Exhibition Proceedings 2019:951–957. https://doi.org/10.5071/27thEUBCE2019-2CV.6.24
  14. [14] Ng I-S., Tan S.-I., Kao P.-H., Chang Y.-K., Chang J.-S. Recent developments on genetic engineering of microalgae for biofuels and bio-based chemicals. Biotechnology Journal 2017:12(10):1600644. https://doi.org/10.1002/biot.20160064410.1002/biot.20160064428786539
  15. [15] Choi Y.Y., Patel A. K., Hong M. E., Chang W. S., Sim S. J. Microalgae Bioenergy with Carbon Capture and Storage (BECCS): An emerging sustainable bioprocess for reduced CO2 emission and biofuel production. Bioresource Technology Reports 2019:7:100270. https://doi.org/10.1016/j.biteb.2019.10027010.1016/j.biteb.2019.100270
  16. [16] Hosseini N. S., Shang H., Scott J. A. Biosequestration of industrial off-gas CO2 for enhanced lipid productivity in open microalgae cultivation systems. Renewable and Sustainable Energy Reviews 2018:92:458–469. https://doi.org/10.1016/j.rser.2018.04.08610.1016/j.rser.2018.04.086
  17. [17] Richardson J. W., Johnson M. D., Outlaw J. L. Economic comparison of open pond raceways to photo bio-reactors for profitable production of algae for transportation fuels in the Southwest. Algal Research 2012:1(1):93–100. https://doi.org/10.1016/j.algal.2012.04.00110.1016/j.algal.2012.04.001
  18. [18] Conti F., Sonnleitner M., Saidi A., Goldbrunner M. Monitoring the mixing of an artificial model substrate in a scaledown laboratory digester. Renewable Energy 2019:132:351–362. https://doi.org/10.1016/j.renene.2018.08.01310.1016/j.renene.2018.08.013
  19. [19] Wiedemann L., Conti F., Sonnleitner M., Saidi A., Goldbrunner M. Investigation and optimization of the mixing in a biogas digester with a laboratory experiment and an artificial model substrate. European Biomass Conference and Exhibition Proceedings 2017:889–892. https://doi.org/10.5071/25thEUBCE2017-2CV.4.14
  20. [20] Conti F., Wiedemann L., Sonnleitner M., Goldbrunner M. Thermal behaviour of viscosity of aqueous cellulose solutions to emulate biomass in anaerobic digesters. New Journal of Chemistry 2018:42:1099–1104. https://doi.org/10.1039/C7NJ03199H10.1039/C7NJ03199H
  21. [21] Wiedemann L., Conti F., Saidi A., Sonnleitner M., Goldbrunner M. Modeling Mixing in Anaerobic Digesters with Computational Fluid Dynamics Validated by Experiments. Chemical Engineering and Technology 2018:41(11):2101– 2110. https://doi.org/10.1002/ceat.20180008310.1002/ceat.201800083
  22. [22] Jadhav D. A., Jain S. C., Ghangrekar M. M. Simultaneous Wastewater Treatment, Algal Biomass Production and Electricity Generation in Clayware Microbial Carbon Capture Cells. Applied Biochemistry and Biotechnology 2017:183:1076–1092. https://doi.org/10.1007/s12010-017-2485-510.1007/s12010-017-2485-528466460
  23. [23] Hoekman S. K., Broch A., Robbins C., Ceniceros E., Natarajan M. Review of biodiesel composition, properties, and specifications. Renewable and Sustainable Energy Reviews 2012:16(1):143–169. https://doi.org/10.1016/j.rser.2011.07.14310.1016/j.rser.2011.07.143
  24. [24] Harris E. H. Chlamydomonas as a model organism. Annual Review of Plant Physiology and Plant Molecular Biology 2001:52(1):363–406. https://doi.org/10.1146/annurev.arplant.52.1.36310.1146/annurev.arplant.52.1.36311337403
  25. [25] Banerjee S., Ray A., Das D. Optimization of Chlamydomonas reinhardtii cultivation with simultaneous CO2 sequestration and biofuels production in a biorefinery framework. Science of The Total Environment 2021:762:143080. https://doi.org/10.1016/j.scitotenv.2020.14308010.1016/j.scitotenv.2020.14308033162147
  26. [26] Moon M., Kim C. W., Park W.-K., Yoo G., Choi Y.-E., Yang J.-W. Mixotrophic growth with acetate or volatile fatty acids maximizes growth and lipid production in Chlamydomonas reinhardtii. Algal Research 2013:2(4):352–357. https://doi.org/10.1016/j.algal.2013.09.00310.1016/j.algal.2013.09.003
  27. [27] Kumar K., Das D. Growth characteristics of Chlorella sorokiniana in airlift and bubble column photobioreactors. Bioresource Technology 2012:116:307–313. https://doi.org/10.1016/j.biortech.2012.03.07410.1016/j.biortech.2012.03.07422525259
  28. [28] Karpagam R., Preeti R., Ashokkumar B., Varalakshmi P. Enhancement of lipid production and fatty acid profiling in Chlamydomonas reinhardtii, CC1010 for biodiesel production. Ecotoxicology and Environmental Safety 2012:121:253–257. https://doi.org/10.1016/j.ecoenv.2015.03.01510.1016/j.ecoenv.2015.03.01525838071
  29. [29] Cakmak Z. E., Olmez T. T., Cakmak T., Menemen Y., Tekinay T. Induction of triacylglycerol production in Chlamydomonas reinhardtii: Comparative analysis of different element regimes. Bioresource Technology 2014:155:379–387. https://doi.org/10.1016/j.biortech.2013.12.09310.1016/j.biortech.2013.12.09324472680
  30. [30] Chandra R., Rohit M. V., Swamy Y. V., Venkata Mohan S. Regulatory function of organic carbon supplementation on biodiesel production during growth and nutrient stress phases of mixotrophic microalgae cultivation. Bioresource Technology 2014:165:279–287. https://doi.org/10.1016/j.biortech.2014.02.10210.1016/j.biortech.2014.02.10224703606
  31. [31] Karpagam R., Jawahar R. K., Ashokkumar B., Varalakshmi P. Characterization and fatty acid profiling in two fresh water microalgae for biodiesel production: Lipid enhancement methods and media optimization using response surface methodology. Bioresource Technology 2015:188:177–184. https://doi.org/10.1016/j.biortech.2015.01.05310.1016/j.biortech.2015.01.05325682476
  32. [32] Siaut M., et al. Oil accumulation in the model green alga Chlamydomonas reinhardtii: characterization, variability between common laboratory strains and relationship with starch reserves. BMC Biotechnology 2011:11:7. https://doi.org/10.1186/1472-6750-11-710.1186/1472-6750-11-7303661521255402
  33. [33] Fayyaz M., Chew K. W., Show P. L., Ling T. C., Ng I-S., Chang J.-S. Genetic engineering of microalgae for enhanced biorefinery capabilities. Biotechnology Advances 2020:43:107. https://doi.org/10.1016/j.biotechadv.2020.10755410.1016/j.biotechadv.2020.10755432437732
DOI: https://doi.org/10.2478/rtuect-2021-0042 | Journal eISSN: 2255-8837 | Journal ISSN: 1691-5208
Language: English
Page range: 574 - 586
Published on: Sep 30, 2021
Published by: Riga Technical University
In partnership with: Paradigm Publishing Services
Publication frequency: 2 times per year

© 2021 Marta Bertolini, Fosca Conti, published by Riga Technical University
This work is licensed under the Creative Commons Attribution 4.0 License.