[1] Yan D., Hong T. Definition and Simulation of Occupant Behavior in Buildings. Annex 66 Final (2018) Report. [Online]. [Accessed 10.03.2021]. Available: https://annex66.org/?q=Publication%0A http://www.ieaebc.org/projects/project?AnnexID=66
[6] Simanic B., Nordquist B., Bagge H. & Johansson D. Influence of User-Related Parameters on Calculated Energy Use in Low-Energy School Buildings. Energies 2020:13(11):2985. https://doi.org/10.3390/en1311298510.3390/en13112985
[10] Peper S., Feist W., Monitoring und Bilanzrechnung: Ganz ohne Performance GAP. In Proceedings of the CESBP Central European Symposium on Building Physics and BauSIM 2016, Fraunhofer IRB Verlag: Dresden, Germany.
[16] EN 16798-1:2019 Energy performance of buildings – Ventilation for buildings – Part 1: Indoor environmental input parameters for design and assessment of energy performance of buildings addressing indoor air quality, thermal environment, lighting and acoustics – Module M1-6.
[20] Storn R., Price K. Differential Evolution—A Simple and Efficient Adaptive Scheme for Global Optimization over Continuous Spaces. International Computer Science Institute, CA, Technical Report TR-95-012, Berkeley, USA, 1995.
[21] Huang G. B., Babri H. A. Upper bounds on the number of hidden neurons in feedforward networks with arbitrary bounded nonlinear activation functions. IEEE Transactions on Neural Networks. 1998:9(1):224–229. https://doi.org/10.1109/72.65504510.1109/72.65504518252445
[22] Huang G. B. Learning capability and storage capacity of two-hidden-layer feedforward networks IEEE Transactions on Neural Networks 2003:14:274–281. https://doi.org/doi:10.1109/TNN.2003.80940110.1109/TNN.2003.80940118238011
[23] Huang G. B., Liang N. Y., Rong H. J., Saratchandran R., Sundararajan N. On-line sequential extreme learning machine. The IASTED International Conference on Computational Intelligence. Calgary, Canada, 2005.
[27] Song S., Wang Y., Lin X., Qingbao H. Study on GA-based Training Algorithm for Extreme Learning Machine. 7th International Conference on Intelligent Human-Machine Systems and Cybernetics, Hangzhou, China, 2015. https://doi.org/10.1109/IHMSC.2015.15610.1109/IHMSC.2015.156