Have a personal or library account? Click to login
Office Building’s Occupancy Prediction Using Extreme Learning Machine Model with Different Optimization Algorithms Cover

Office Building’s Occupancy Prediction Using Extreme Learning Machine Model with Different Optimization Algorithms

Open Access
|Sep 2021

References

  1. [1] Yan D., Hong T. Definition and Simulation of Occupant Behavior in Buildings. Annex 66 Final (2018) Report. [Online]. [Accessed 10.03.2021]. Available: https://annex66.org/?q=Publication%0A http://www.ieaebc.org/projects/project?AnnexID=66
  2. [2] Delzendeh E., Wu S., Lee A., Zhou Y. The impact of occupants’ behaviours on building energy analysis: A research review. Renewable and Sustainable Energy Reviews 2017:80:1061–1071. https://doi.org/10.1016/j.rser.2017.05.26410.1016/j.rser.2017.05.264
  3. [3] RIBA CIBSE platform CarbonBuzz [Online]. [Accessed 12.06.2020]. Available: https://www.carbonbuzz.org/index.jsp
  4. [4] Zou P. X. W., Alam M. Closing the building energy performance gap through component level analysis and stakeholder collaborations. Energy and Buildings 2020:224:110276. https://doi.org/10.1016/j.enbuild.2020.11027610.1016/j.enbuild.2020.110276
  5. [5] Geraldi M. S., Ghisi E. Building-level and stock-level in contrast: A literature review of the energy performance of buildings during the operational stage. Energy and Buildings 2020:211:109810. https://doi.org/10.1016/j.enbuild.2020.10981010.1016/j.enbuild.2020.109810
  6. [6] Simanic B., Nordquist B., Bagge H. & Johansson D. Influence of User-Related Parameters on Calculated Energy Use in Low-Energy School Buildings. Energies 2020:13(11):2985. https://doi.org/10.3390/en1311298510.3390/en13112985
  7. [7] Delzendeh E., Wu S., Lee A., & Zhou Y. The impact of occupants’ behaviours on building energy analysis: A research review. Renewable and Sustainable Energy Reviews 2017:80:1061–1071. https://doi.org/10.1016/j.rser.2017.05.26410.1016/j.rser.2017.05.264
  8. [8] Ding Y., Chen W., Wei S., Yang F. An occupancy prediction model for campus buildings based on the diversity of occupancy patterns. Sustainable Cities and Society 2021:64:102533. https://doi.org/10.1016/j.scs.2020.10253310.1016/j.scs.2020.102533
  9. [9] Liang J., QiuY., Hu M. Mind the energy performance gap: Evidence from green commercial buildings. Resources, Conservation and Recycling 2019:141:364–377 https://doi.org/10.1016/j.resconrec.2018.10.02110.1016/j.resconrec.2018.10.021
  10. [10] Peper S., Feist W., Monitoring und Bilanzrechnung: Ganz ohne Performance GAP. In Proceedings of the CESBP Central European Symposium on Building Physics and BauSIM 2016, Fraunhofer IRB Verlag: Dresden, Germany.
  11. [11] Hu S., Yan D., Azar E., Guo F. A systematic review of occupant behavior in building energy policy. Building and Environment 2020:175:106807. https://doi.org/10.1016/j.buildenv.2020.10680710.1016/j.buildenv.2020.106807
  12. [12] Peng Y., Rysanek A., Nagy Z., Schlüter A. Using machine learning techniques for occupancy-prediction-based cooling control in office buildings. Applied Energy 2018:211:1343–1358. https://doi.org/10.1016/j.apenergy.2017.12.00210.1016/j.apenergy.2017.12.002
  13. [13] Mahdavi A., Mohammadi A., Kabir E., Lambeva L. Occupants’ operation of lighting and shading systems in office buildings. Journal of Building Performance Simulation 2008:1:57–65. https://doi.org/10.1080/1940149080190650210.1080/19401490801906502
  14. [14] Peng Y., Rysanek A., Nagy Z., Schlüter A. Occupancy learning-based demand-driven cooling control for office spaces. Building and Environment 2017:122:145–160. https://doi.org/10.1016/j.buildenv.2017.06.01010.1016/j.buildenv.2017.06.010
  15. [15] Bielskus J., Motuzienė V., Vilutienė T., Indriulionis A. Occupancy Prediction Using Differential Evolution Online Sequential Extreme Learning Machine Model. Energies 2020:13(15):4033. https://doi.org/10.3390/en1315403310.3390/en13154033
  16. [16] EN 16798-1:2019 Energy performance of buildings – Ventilation for buildings – Part 1: Indoor environmental input parameters for design and assessment of energy performance of buildings addressing indoor air quality, thermal environment, lighting and acoustics – Module M1-6.
  17. [17] Candanedo L. M., Feldheim V. Accurate occupancy detection of an office room from light, temperature, humidity and CO2 measurements using statistical learning models. Energy and Buildings 2016:112:28–39. https://doi.org/10.1016/j.enbuild.2015.11.07110.1016/j.enbuild.2015.11.071
  18. [18] Han M., Zhao J., Zhang X., Shen J., Li Y. The reinforcement learning method for occupant behaviour in building control: A review. Energy and Built Environment 2021:2(2):137–148. https://doi.org/10.1016/j.enbenv.2020.08.00510.1016/j.enbenv.2020.08.005
  19. [19] Huang G.-B., Zhu Q.-Y., Siew C.-K. Extreme learning machine: A new learning scheme of feedforward neural networks. Proc. International Joint Conference on Neural Networks. 2004:1098–7576. https://doi.org/10.1109/IJCNN.2004.1380068.10.1109/IJCNN.2004.1380068
  20. [20] Storn R., Price K. Differential Evolution—A Simple and Efficient Adaptive Scheme for Global Optimization over Continuous Spaces. International Computer Science Institute, CA, Technical Report TR-95-012, Berkeley, USA, 1995.
  21. [21] Huang G. B., Babri H. A. Upper bounds on the number of hidden neurons in feedforward networks with arbitrary bounded nonlinear activation functions. IEEE Transactions on Neural Networks. 1998:9(1):224–229. https://doi.org/10.1109/72.65504510.1109/72.65504518252445
  22. [22] Huang G. B. Learning capability and storage capacity of two-hidden-layer feedforward networks IEEE Transactions on Neural Networks 2003:14:274–281. https://doi.org/doi:10.1109/TNN.2003.80940110.1109/TNN.2003.80940118238011
  23. [23] Huang G. B., Liang N. Y., Rong H. J., Saratchandran R., Sundararajan N. On-line sequential extreme learning machine. The IASTED International Conference on Computational Intelligence. Calgary, Canada, 2005.
  24. [24] Huang G. B., Zhu Q. Y., Siew C. K. Extreme learning machine: Theory and applications. Neurocomputing 2006:70(1– 3):489–501. https://doi.org/10.1016/j.neucom.2005.12.12610.1016/j.neucom.2005.12.126
  25. [25] Huang G. B. An Insight into Extreme Learning Machines: Random Neurons, Random Features and Kernels. Cognitive Computation 2014:6:376–390. https://doi.org/10.1007/s12559-014-9255-210.1007/s12559-014-9255-2
  26. [26] Chen C., Li K., Duan M., Li K. Chapter 6 - Extreme Learning Machine and Its Applications in Big Data Processing, In Intelligent Data-Centric Systems. Cambridge: Academic Press, 2017:117–150. https://doi.org/10.1016/B978-0-12-809393-1.00006-410.1016/B978-0-12-809393-1.00006-4
  27. [27] Song S., Wang Y., Lin X., Qingbao H. Study on GA-based Training Algorithm for Extreme Learning Machine. 7th International Conference on Intelligent Human-Machine Systems and Cybernetics, Hangzhou, China, 2015. https://doi.org/10.1109/IHMSC.2015.15610.1109/IHMSC.2015.156
  28. [28] Roshani A., Roshani A., Roshani A., Salehi M., Esfandyari A. A simulated annealing algorithm for multi-manned assembly line balancing problem. Journal of Manufacturing Systems 2013:32(1):238–247. https://doi.org/10.1016/j.jmsy.2012.11.00310.1016/j.jmsy.2012.11.003
  29. [29] Sieniutycz S., Jeżowski J. Brief review of static optimization methods. Energy Optimization in Process Systems and Fuel Cells (Third Edition) 2018:1–41. https://doi.org/10.1016/B978-0-08-102557-4.00001-310.1016/B978-0-08-102557-4.00001-3
  30. [30] Zhan S., Lin J., Zhang Z., Zhong Y. List-Based Simulated Annealing Algorithm for Traveling Salesman Problem. Corporation Computational Intelligence and Neuroscience 2016:1712630. https://doi.org/10.1155/2016/171263010.1155/2016/1712630480853027034650
DOI: https://doi.org/10.2478/rtuect-2021-0038 | Journal eISSN: 2255-8837 | Journal ISSN: 1691-5208
Language: English
Page range: 525 - 536
Published on: Sep 20, 2021
Published by: Riga Technical University
In partnership with: Paradigm Publishing Services
Publication frequency: 2 times per year

© 2021 Violeta Motuzienė, Jonas Bielskus, Vilūnė Lapinskienė, Genrika Rynkun, published by Riga Technical University
This work is licensed under the Creative Commons Attribution 4.0 License.