Have a personal or library account? Click to login
Natural Ventilation Strategy in a Social Housing with Sub-humid Warm Climate Based on Thermal Comfort Cover

Natural Ventilation Strategy in a Social Housing with Sub-humid Warm Climate Based on Thermal Comfort

Open Access
|Sep 2021

References

  1. [1] Guanajuato L. Código Urbano León Guanajuato. (Urban Development Directorate León Guanajuato). 2020. (In Spanish).
  2. [2] ANSI/ASHRAE. Standard 62.2 Ventilation and Acceptable Indoor Air Quality in Residential Buildings. Atlanta, 2019.
  3. [3] Zhong H., He R., Liu C., Zhao F., Liu D. Full Numerical simulation on the Wind Driven Natural Ventilation across Traditional Songqing Stadium Established since 1936 in Wuhan University. Procedia Engineering 2017:205:56–63. https://doi.org/10.1016/j.proeng.2017.09.934">https://doi.org/10.1016/j.proeng.2017.09.93410.1016/j.proeng.2017.09.934
  4. [4] Daemei A. B., Limaki A. K., Safari H. Opening Performance Simulation in Natural Ventilation Using Design Builder (Case Study: A Residential Home in Rasht). Energy Procedia 2016:100:412–422. https://doi.org/10.1016/j.egypro.2016.10.196">https://doi.org/10.1016/j.egypro.2016.10.19610.1016/j.egypro.2016.10.196
  5. [5] Gan V. J. L., Deng M., Tan Y., Chen W., Cheng J. C. P. BIM-based framework to analyze the effect of natural ventilation on thermal comfort and energy performance in buildings. Energy Procedia 2019:158:3319–3324. https://doi.org/10.1016/j.egypro.2019.01.971">https://doi.org/10.1016/j.egypro.2019.01.97110.1016/j.egypro.2019.01.971
  6. [6] Rinaldi A., Roccotelli M., Mangini A. M., Fanti M. P., Iannone F. Natural Ventilation for Passive Cooling by Means of Optimized Control Logics. Procedia Engineering 2017:180:841–850. https://doi.org/10.1016/j.proeng.2017.04.245">https://doi.org/10.1016/j.proeng.2017.04.24510.1016/j.proeng.2017.04.245
  7. [7] Hamdani M., Bekkouche S. M. A., Benouaz T., Belarbi R., Cherier M. K. The Study Natural Ventilation by Using Buildings Windows: Case Study in a Hot Dry Climate, Ghardaïa, Algeria. Energy Procedia 2017:139:475–480. https://doi.org/10.1016/j.egypro.2017.11.240">https://doi.org/10.1016/j.egypro.2017.11.24010.1016/j.egypro.2017.11.240
  8. [8] Antczak-Jarząbska R., Krzaczek M. Assessment of natural ventilation system for a typical residential house in Poland. Civil And Environmental Engineering Reports 2016:22(3):25–44. https://doi.org/10.1515/ceer-2016-0032">https://doi.org/10.1515/ceer-2016-003210.1515/ceer-2016-0032
  9. [9] Sohail M. An attempt to design a naturally ventilated tower in subtropical climate of the developing country; Pakistan. Environmental and Climate Technologies 2017:21(1):47–67. https://doi.org/10.1515/rtuect-2017-0015">https://doi.org/10.1515/rtuect-2017-001510.1515/rtuect-2017-0015
  10. [10] Vázquez-Torres C. E., Gómez-Amador A., Escobar-Del Pozo C. Desempeño térmico de un espacio habitable con ventilación modo mixto. Diferentes condiciones volumétricas y diferentes condiciones térmico ambientales en el Estado de Guanajuato. México. (Thermal performance of a living space with mixed mode ventilation. Different volumetric conditions and different thermal-environmental conditions in the State of Guanajuato. Mexico). Revista de Arquitectura y Diseño 2019:3(10):11–19. (In Spanish). https://doi.org/10.35429/JAD.2019.10.3.11.19">https://doi.org/10.35429/JAD.2019.10.3.11.1910.35429/JAD.2019.10.3.11.19
  11. [11] Ali S., Kim D. Energy conservation and comfort management in building environment. Int. J. Innov. Comput. Inf. Control. 2013:9:2244.
  12. [12] Instituto del Fondo Nacional de Vivienda para los Trabajadores. Reporte anual de vivienda (Institute of the National Workers’ Housing Fund, “Annual Housing Report). 2019 INFONAVIT. Ciudad de México, 2019. (In Spanish)
  13. [13] Hernández Sampieri R., Fernández Collado C., Baptista Lucio P. Metodología de la investigación. (Methodology of research). México city, 2018. (In Spanish).
  14. [14] Monje-Alvarez C. A. Metodología de la investigación cuantitativa y cualitativa. (Quantitative and qualitative research methodology). Neiva, 2011.
  15. [15] Sánchez-García D., Rubio-Bellido C., Pulido-Arcas J. A., Guevara-García F. J., Canivell J. Adaptive comfort models applied to existing Dwellings in Mediterranean climate considering globalwarming. Sustainability 2018:10. https://doi.org/10.3390/su10103507">https://doi.org/10.3390/su1010350710.3390/su10103507
  16. [16] Auliciems A., Szokolay S. Thermal comfort. In PLEA notes, First edit., PLEA, Ed. Brisbane, 1997, p. 68.
  17. [17] Szokolay S. Introduction to Architectural Science. First edit., vol. 5, no. 2. Oxford, 1997.
  18. [18] Sistema Meteorológico Nacional, ‘Climatic conditions’ 2020. [Online]. [Accessed: 15.12.2020]. Available: https://smn.conagua.gob.mx/es/climatologia/informacion-climatologica/normales-climatologicas-por-estado.
  19. [19] Ali M. H., Abustan I. A new novel index for evaluating model performance. Journal of Natural Resources and Development 2014:04:1–9. https://doi.org/10.5027/jnrd.v4i0.01">https://doi.org/10.5027/jnrd.v4i0.0110.5027/jnrd.v4i0.01
  20. [20] INEGI. Marco Geoestadístico Municipal. Municipal Geostatistical Framework. Köppen Climatic Classification System (1936) modified by Enriqueta García (1973) and INEGI (1976), 2020. [Online]. [Accessed: 15.12.2020]. Available: http://cuentame.inegi.org.mx/mapas/pdf/nacional/tematicos/climas.pdf.
  21. [21] Gómez-Azpeitia G. Climate characterisation and analysis. Colima, 2016.
  22. [22] Kim J., Tartarini F., Parkinson T., Cooper P., de Dear R. Thermal comfort in a mixed-mode building: Are occupants more adaptive? Energy and Buildings 2019:203:109436. https://doi.org/10.1016/j.enbuild.2019.109436">https://doi.org/10.1016/j.enbuild.2019.10943610.1016/j.enbuild.2019.109436
  23. [23] ASTM C1155-95. Standard Practice for Determining Thermal Resistance of Building Envelope Components from the In-Situ Data. West Conshohocken, USA, 2013.
  24. [24] Esparza López C. J. Estudio experimental de dispositivos de enfriamiento evaporativo indirecto para un clima cálido sub-húmedo. (Experimental study of indirect evaporative cooling devices for a sub-humid warm climate). Programa Interinstitucional Dr. en Arquit. Univ. Autónoma Aguascalientes, Univ. Colima, Univ. Guanajuato y Univ. Michoacana San Nicolás Hidalgo, May 2015, p. 190, 2015. (In Spanish). https://doi.org/10.13140/RG.2.1.3925.4806">https://doi.org/10.13140/RG.2.1.3925.4806.
  25. [25] Bienvenido-Huertas D., Sánchez-García D., Rubio-Bellido C. Analysing natural ventilation to reduce the cooling energy consumption and the fuel poverty of social dwellings in coastal zones. Applied Energy 2020:279:115845. https://doi.org/10.1016/j.apenergy.2020.115845">https://doi.org/10.1016/j.apenergy.2020.11584510.1016/j.apenergy.2020.115845749214632952267
  26. [26] Deng X., Kokogiannakis G., Ma Z., Cooper P. Thermal Comfort Evaluation of a Mixed-mode Ventilated Office Building with Advanced Natural Ventilation and Underfloor air Distribution Systems. Energy Procedia 2017:111:520–529. https://doi.org/10.1016/j.egypro.2017.03.214">https://doi.org/10.1016/j.egypro.2017.03.21410.1016/j.egypro.2017.03.214
  27. [27] Belmans B., Aerts D., Verbeke S., Audenaert A., Descamps F. Set-up and evaluation of a virtual test bed for simulating and comparing single- and mixed-mode ventilation strategies. Building and Environment 2019:151:97–111. https://doi.org/10.1016/j.buildenv.2019.01.027">https://doi.org/10.1016/j.buildenv.2019.01.02710.1016/j.buildenv.2019.01.027
  28. [28] Carlton E. J. et al. Relationships between home ventilation rates and respiratory health in the Colorado Home Energy Efficiency and Respiratory Health (CHEER) study. Environmental Research 2019:169:297–307. https://doi.org/10.1016/j.envres.2018.11.019">https://doi.org/10.1016/j.envres.2018.11.01910.1016/j.envres.2018.11.01930500684
  29. [29] American Society of Heating Refrigerating and Air-conditioning Engineers. Thermal environmental conditions for human occupancy, ASHRAE Standard 55-2013. Atlanta, 2013.
  30. [30] Kim S. K., Hong W. H., Hwang J. H., Jung M. S., Park Y. S. Optimal control method for HVAC systems in offices with a control algorithm based on thermal environment. Buildings 2020:10(5):10050095. https://doi.org/10.3390/buildings10050095">https://doi.org/10.3390/buildings1005009510.3390/buildings10050095
  31. [31] Utkucu D., Sözer H. An evaluation process for natural ventilation using a scenario-based multi-criteria and multi-interaction analysis. Energy Reports 2020:6:644–661. https://doi.org/10.1016/j.egyr.2020.02.001">https://doi.org/10.1016/j.egyr.2020.02.00110.1016/j.egyr.2020.02.001
DOI: https://doi.org/10.2478/rtuect-2021-0037 | Journal eISSN: 2255-8837 | Journal ISSN: 1691-5208
Language: English
Page range: 508 - 524
Published on: Sep 17, 2021
Published by: Riga Technical University
In partnership with: Paradigm Publishing Services
Publication frequency: 2 times per year

© 2021 Claudia Eréndira Vázquez-Torres, Adolfo Gómez-Amador, Gonzalo Bojórquez-Morales, Arash Beizaee, Pablo David Elías-López, published by Riga Technical University
This work is licensed under the Creative Commons Attribution 4.0 License.