[2] Bøhm B., Kristjansson H. Single, twin and triple buried heating pipes: on potential savings in heat losses and costs. International Journal Energy Res 2005:29:1301e12. https://doi.org/10.1002/er.111810.1002/er.1118
[3] Claesson J., Bennet J., Hellström G. Multipole method to compute the conductive heat flows to and between pipes in a cylinder. Lund: Department of Building Technology and Mathematical Physics, 1987.
[6] DIN EN 13941–1:2019 District heating pipes – Design and installation of thermal insulated bonded single and twin pipe systems for directly buried hot water networks – Part 1: Design.
[7] Oppelt T., Urbaneck T., Platzer B. New model for calculating the heat flow through the walls of buried parallel pipes. EuroHeat&Power 2013:10(3):38–43.
[8] Bøhm B. On transient heat losses from buried district heating pipes. International Journal Energy Res 2000:24(15):1311–1334. https://doi.org/10.1002/1099-114X(200012)24:15<1311::AID-ER648>3.0.CO;2-Q10.1002/1099-114X(200012)24:15<1311::AID-ER648>3.0.CO;2-Q
[9] Henögl O. Vergleich der thermischen Eigenschaften von verschiedenen bodenmechanisch geeigneten Bettungsmaterialien für Fernwärmeleitungen (Comparison of thermal properties of different soil mechanical bedding materials suitable for district heating pipelines). 7. Kolloquium Bauen in Boden und Fels, Germany, 2010. (in German)
[11] Henning A., Limberg A. Veränderung des oberflächennahen Temperaturfeldes von Berlin durch Klimawandel und Urbanisierung (Changes in the near-surface temperature field of Berlin due to climate change and urbanization) Brandenburgische geowissenschaftliche Beiträge 2012:19:81–92. (in German)
[12] Nord N., Ingebretsen M., Tryggestad I. Possibilities for Transition of Existing Residential Buildings to Low Temperature District Heating System in Norway. Proceedings of the 12th REHVA World Congress 2016:3:22–25.
[14] Rebollar J. V., Himpe E., Janssens A. Performance evaluation of a low temperature district heating system based on simulation, uncertainty and sensitivity analysis. International Building Performance Simulation, Proceedings 2013:3809–3816.
[15] Olsen P. K., et. al. A New Low–Temperature District Heating System for Low Energy Buildings. Presented at the 11th International Symposium on District Heating and Cooling, Reykjavik, Iceland, 2008.
[16] Wärmekataster für die Freie und Hansestadt Hamburg (Heat register for the Free and Hanseatic City of Hamburg) [Online]. [Acessed 31.01.2021]. Available: https://www.hamburg.de/energiewende/waermekataster/8342506/waermekataster-fuer-die-fhh/ (in German)
[22] RWE Group. Technische Anschlussbedingungen für den Anschluss an das Fernwärmenetz Hamburg Rahlstedt– Meiendorf der innogy SE (Technical connection conditions innogy SE). Essen: RWE Group, 2014. (in German)
[23] Dahlem K. H. Der Einfluß des Grundwassers auf den Wärmeverlust erdreichberührter Bauteile (The effect of groundwater on the heat loss of building parts in contact with the ground). Thesis. Kaiserslautern: University of Kaiserslautern, 2000. (in German)
[25] DWD Climate Data Center (CDC): Historische stündliche Stationsmessungen der Erdbodentemperatur für Deutschland (Historical hourly measurements of ground temperature for Germany). Version v006. Offenbach: DWD CDC, 2018. (in German)
[26] AGFW FW 440. Teil 2. Hydraulic calculation of heating water district heating networks – Fundamentals of steady– state calculation, characteristic values and calculation variables. Frankfurt am Main: AGFW, 2012.
[27] DIN EN 253:2020–03 District heating pipes - Bonded single pipe systems for directly buried hot water networks - Factory made pipe assembly of steel service pipe, polyurethane thermal insulation and a casing of polyethylene.
[28] DIN EN 17415–1: 2019 District cooling pipes – Bonded single pipe systems for directly buried cold water networks – Part 1: Factory made pipe assembly of steel or plastic service pipe, polyurethane thermal insulation and a casing of polyethylene.