[1] Zhao J., Li X. A review of polymer electrolyte membrane fuel cell durability for vehicular applications: Degradation modes and experimental techniques. Energy Conversion and Management 2019:199:112022. https://doi.org/10.1016/j.enconman.2019.112022">https://doi.org/10.1016/j.enconman.2019.11202210.1016/j.enconman.2019.112022
[3] Tabassum N., Islam N., Ahmed S. Progress in microbial fuel cells for sustainable management of industrial effluents. Process Biochemistry 2021:106:20–41. https://doi.org/10.1016/j.procbio.2021.03.032">https://doi.org/10.1016/j.procbio.2021.03.03210.1016/j.procbio.2021.03.032
[4] Marks J., et al. Effect of combining different substrates and inoculum sources on bioelectricity generation and COD removal in a two-chambered microbial fuel cell: A preliminary investigation. Environmental and Climate Technology 2020:24(2):67–78. https://doi.org/10.2478/rtuect-2020-0055">https://doi.org/10.2478/rtuect-2020-005510.2478/rtuect-2020-0055
[5] Pahari S., Roy S. Structural and conformational properties of polybenzimidazoles in melt and phosphoric acid solution: A polyelectrolyte membrane for fuel cells. RSC Advances 2016:6:8211–8221. https://doi.org/10.1039/c5ra22159e">https://doi.org/10.1039/c5ra22159e10.1039/C5RA22159E
[6] Korte C. Phosphoric Acid, an Electrolyte for Fuel Cells – Temperature and Composition Dependence of Vapor Pressure and Proton Conductivity. In Fuel Cell Science and Engineering. Wiley, 2012, pp. 335–359.10.1002/9783527650248.ch12
[7] Korte C., et al. Phosphoric Acid and its Interactions with Polybenzimidazole-Type Polymers. In Li Q., Aili D., Hjuler H., Jensen J. (eds) High Temperature Polymer Electrolyte Membrane Fuel Cells. Springer, 2016, pp. 169–194. https://doi.org/10.1007/978-3-319-17082-4_8">https://doi.org/10.1007/978-3-319-17082-4_810.1007/978-3-319-17082-4_8
[8] Rodier M., et al. Determination of Water Vapor Pressure over Corrosive Chemicals Versus Temperature Using Raman Spectroscopy as Exemplified with 85.5% Phosphoric Acid. Applied Spectroscopy 2016:70:1186–1194. https://doi.org/10.1177/0003702816652362">https://doi.org/10.1177/000370281665236210.1177/000370281665236227273974
[9] Halter J., et al. Breaking through the Cracks: On the Mechanism of Phosphoric Acid Migration in High Temperature Polymer Electrolyte Fuel Cells. Journal of Electrochemical Society 2018:165(14):F1176–F1183. https://doi.org/10.1149/2.0501814jes">https://doi.org/10.1149/2.0501814jes10.1149/2.0501814jes
[10] Di Noto V., et al. Effect of high pressure CO2 on the structure of PMMA: A FT-IR study. Journal of Physical Chemistry B 2011:115:13519–13525. https://doi.org/10.1021/jp207917n">https://doi.org/10.1021/jp207917n10.1021/jp207917n21999722
[11] Melchior J.-P., Kreuer K.-D., Maier J. Proton conduction mechanisms in the phosphoric acid-water system (H4P2O7-H3PO4·2H2O): A 1H, 31P and 17O PFG-NMR and conductivity study. Physical Chemistry Chemical Physics 2017:19:587–600. https://doi.org/10.1039/C6CP04855B">https://doi.org/10.1039/C6CP04855B10.1039/C6CP04855B27918028
[12] Vilčiauskas L., et al. The mechanism of proton conduction in phosphoric acid. Nature Chemistry 2012:4:461–466. https://doi.org/10.1038/nchem.1329">https://doi.org/10.1038/nchem.132910.1038/nchem.132922614380
[13] Heres M., et al. Proton Conductivity in Phosphoric Acid: The Role of Quantum Effects. Physical Review Letters 2016:117:156001. https://doi.org/10.1103/PhysRevLett.117.156001">https://doi.org/10.1103/PhysRevLett.117.15600110.1103/PhysRevLett.117.15600127768354
[14] Bakher Z., Kaddami M. Thermodynamic equilibrium study of phosphorus pentoxide-water binary system: The stability and solubility of 10H3PO4·H2O. Calphad 2018:63:148–155. https://doi.org/10.1016/j.calphad.2018.09.006">https://doi.org/10.1016/j.calphad.2018.09.00610.1016/j.calphad.2018.09.006
[15] Aili D., et al. Phosphoric acid dynamics in high temperature polymer electrolyte membranes. Journal of The Electrochemical Society 2020:167:134507. https://doi.org/10.1149/1945-7111/abb70c">https://doi.org/10.1149/1945-7111/abb70c10.1149/1945-7111/abb70c
[16] Mifsud C., Fujioka T., Fink D. Extraction and purification of quartz in rock using hot phosphoric acid for in situ cosmogenic exposure dating. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 2013:294:203–207. https://doi.org/10.1016/j.nimb.2012.08.037">https://doi.org/10.1016/j.nimb.2012.08.03710.1016/j.nimb.2012.08.037
[18] McKee C. B. An accurate equation for the electrolytic conductivity of potassium chloride solutions. Journal of Solution Chemistry 2009:38:1155–1172. https://doi.org/10.1007/s10953-009-9436-x">https://doi.org/10.1007/s10953-009-9436-x10.1007/s10953-009-9436-x
[19] MacDonald D. I., Boyack J. R., Density, electrical conductivity, and vapor pressure of concentrated phosphoric acid. Journal of Chemical & Engineering Data 1969:14380–384. https://doi.org/10.1021/je60042a013">https://doi.org/10.1021/je60042a01310.1021/je60042a013
[20] Jiang X., et al. Density, viscosity, and thermal conductivity of electronic grade phosphoric acid. Journal of Chemical & Engineering Data 2011:56(2):205–211. https://doi.org/10.1021/je100938j">https://doi.org/10.1021/je100938j10.1021/je100938j
[21] Majerus A., et al. Thermogravimetric and spectroscopic investigation of the interaction between polybenzimidazole and phosphoric acid. ECS Transactions 2013:50(2):1155–1165. https://doi.org/10.1149/05002.1155ecst">https://doi.org/10.1149/05002.1155ecst10.1149/05002.1155ecst
[22] Conti F., et al. Carbon NMR investigation of the polybenzimidazole-dimethylacetamide interactions in membranes for fuel cells. New Journal of Chemistry 2013:37:152–156. https://doi.org/10.1039/c2nj40728k">https://doi.org/10.1039/c2nj40728k10.1039/C2NJ40728K
[23] Lang S., et al. Diffusion coefficients and VLE data of aqueous phosphoric acid. Journal of Chemical Thermodynamics 2014:68:75–81. https://doi.org/10.1016/j.jct.2013.08.028">https://doi.org/10.1016/j.jct.2013.08.02810.1016/j.jct.2013.08.028
[24] Kazdal T.J., et al. Modelling of the vapour-liquid equilibrium of water and the in situ concentration of H3PO4 in a high temperature proton exchange membrane fuel cell. Journal of Power Sources 2014:249:446–456. https://doi.org/10.1016/j.jpowsour.2013.10.098">https://doi.org/10.1016/j.jpowsour.2013.10.09810.1016/j.jpowsour.2013.10.098
[25] Luff B. B. Heat capacity and enthalpy of phosphoric acid. Journal of Chemical & Engineering Data 1981:26:70–74. https://doi.org/10.1021/je00023a023">https://doi.org/10.1021/je00023a02310.1021/je00023a023
[26] Jones G. P., Lee D. A. The enthalpy of dilution of concentrated orthophosphoric acid. Journal of Chemical Thermodynamics 1970:2:760–761. https://doi.org/10.1016/0021-9614(70)90053-4">https://doi.org/10.1016/0021-9614(70)90053-410.1016/0021-9614(70)90053-4
[27] Fleige M., et al. Evaluation of temperature and electrolyte concentration dependent Oxygen solubility and diffusivity in phosphoric acid. Electrochimica Acta 2016:209:399–406. https://doi.org/10.1016/j.electacta.2016.05.048">https://doi.org/10.1016/j.electacta.2016.05.04810.1016/j.electacta.2016.05.048
[28] Petrowsky M., Frech R. Temperature dependence of ion transport: The compensated Arrhenius equation. Journal of Physical Chemistry B 2009:113:5996–6000. https://doi.org/10.1021/jp810095g">https://doi.org/10.1021/jp810095g10.1021/jp810095g19338318
[29] Eberhardt S. H., et al. Dynamic operation of HT-PEFC: In-operando imaging of phosphoric acid profiles and (re)distribution. Journal of The Electrochemical Society 2015:162:F310–F316. https://doi.org/10.1149/2.0751503jes">https://doi.org/10.1149/2.0751503jes10.1149/2.0751503jes
[30] Boillat P., et al. Evaluation of neutron imaging for measuring phosphoric acid distribution in high temperature PEFCs. Journal of The Electrochemical Society 2014:161:F192–F198. https://doi.org/10.1149/2.023403jes">https://doi.org/10.1149/2.023403jes10.1149/2.023403jes
[31] Conti F., et al. Phase diagram approach to study acid and water uptake of polybenzimidazole-type membranes for fuel cells. ECS Transactions 2016:72:157–167. https://doi.org/10.1149/07208.0157ecst">https://doi.org/10.1149/07208.0157ecst10.1149/07208.0157ecst
[32] Korte C., et al. Uptake of protic electrolytes by polybenzimidazole-type polymers: absorption isotherms and electrolyte/polymer interactions. Journal of Applied Electrochemistry 2015:45:857–871. https://doi.org/10.1007/s10800-015-0855-7">https://doi.org/10.1007/s10800-015-0855-710.1007/s10800-015-0855-7