Have a personal or library account? Click to login
Electrical Conductivity and Water Effects in Phosphoric Acid Solutions for Doping of Membranes in Polymer Electrolyte Fuel Cells Cover

Electrical Conductivity and Water Effects in Phosphoric Acid Solutions for Doping of Membranes in Polymer Electrolyte Fuel Cells

Open Access
|Aug 2021

References

  1. [1] Zhao J., Li X. A review of polymer electrolyte membrane fuel cell durability for vehicular applications: Degradation modes and experimental techniques. Energy Conversion and Management 2019:199:112022. https://doi.org/10.1016/j.enconman.2019.112022">https://doi.org/10.1016/j.enconman.2019.11202210.1016/j.enconman.2019.112022
  2. [2] Zhang J., et al. Advancement toward polymer electrolyte membrane fuel cells at elevated temperatures. Research 2020:9089405. https://doi.org/10.34133/2020/9089405">https://doi.org/10.34133/2020/908940510.34133/2020/9089405729835332566932
  3. [3] Tabassum N., Islam N., Ahmed S. Progress in microbial fuel cells for sustainable management of industrial effluents. Process Biochemistry 2021:106:20–41. https://doi.org/10.1016/j.procbio.2021.03.032">https://doi.org/10.1016/j.procbio.2021.03.03210.1016/j.procbio.2021.03.032
  4. [4] Marks J., et al. Effect of combining different substrates and inoculum sources on bioelectricity generation and COD removal in a two-chambered microbial fuel cell: A preliminary investigation. Environmental and Climate Technology 2020:24(2):67–78. https://doi.org/10.2478/rtuect-2020-0055">https://doi.org/10.2478/rtuect-2020-005510.2478/rtuect-2020-0055
  5. [5] Pahari S., Roy S. Structural and conformational properties of polybenzimidazoles in melt and phosphoric acid solution: A polyelectrolyte membrane for fuel cells. RSC Advances 2016:6:8211–8221. https://doi.org/10.1039/c5ra22159e">https://doi.org/10.1039/c5ra22159e10.1039/C5RA22159E
  6. [6] Korte C. Phosphoric Acid, an Electrolyte for Fuel Cells – Temperature and Composition Dependence of Vapor Pressure and Proton Conductivity. In Fuel Cell Science and Engineering. Wiley, 2012, pp. 335–359.10.1002/9783527650248.ch12
  7. [7] Korte C., et al. Phosphoric Acid and its Interactions with Polybenzimidazole-Type Polymers. In Li Q., Aili D., Hjuler H., Jensen J. (eds) High Temperature Polymer Electrolyte Membrane Fuel Cells. Springer, 2016, pp. 169–194. https://doi.org/10.1007/978-3-319-17082-4_8">https://doi.org/10.1007/978-3-319-17082-4_810.1007/978-3-319-17082-4_8
  8. [8] Rodier M., et al. Determination of Water Vapor Pressure over Corrosive Chemicals Versus Temperature Using Raman Spectroscopy as Exemplified with 85.5% Phosphoric Acid. Applied Spectroscopy 2016:70:1186–1194. https://doi.org/10.1177/0003702816652362">https://doi.org/10.1177/000370281665236210.1177/000370281665236227273974
  9. [9] Halter J., et al. Breaking through the Cracks: On the Mechanism of Phosphoric Acid Migration in High Temperature Polymer Electrolyte Fuel Cells. Journal of Electrochemical Society 2018:165(14):F1176–F1183. https://doi.org/10.1149/2.0501814jes">https://doi.org/10.1149/2.0501814jes10.1149/2.0501814jes
  10. [10] Di Noto V., et al. Effect of high pressure CO2 on the structure of PMMA: A FT-IR study. Journal of Physical Chemistry B 2011:115:13519–13525. https://doi.org/10.1021/jp207917n">https://doi.org/10.1021/jp207917n10.1021/jp207917n21999722
  11. [11] Melchior J.-P., Kreuer K.-D., Maier J. Proton conduction mechanisms in the phosphoric acid-water system (H4P2O7-H3PO4·2H2O): A 1H, 31P and 17O PFG-NMR and conductivity study. Physical Chemistry Chemical Physics 2017:19:587–600. https://doi.org/10.1039/C6CP04855B">https://doi.org/10.1039/C6CP04855B10.1039/C6CP04855B27918028
  12. [12] Vilčiauskas L., et al. The mechanism of proton conduction in phosphoric acid. Nature Chemistry 2012:4:461–466. https://doi.org/10.1038/nchem.1329">https://doi.org/10.1038/nchem.132910.1038/nchem.132922614380
  13. [13] Heres M., et al. Proton Conductivity in Phosphoric Acid: The Role of Quantum Effects. Physical Review Letters 2016:117:156001. https://doi.org/10.1103/PhysRevLett.117.156001">https://doi.org/10.1103/PhysRevLett.117.15600110.1103/PhysRevLett.117.15600127768354
  14. [14] Bakher Z., Kaddami M. Thermodynamic equilibrium study of phosphorus pentoxide-water binary system: The stability and solubility of 10H3PO4·H2O. Calphad 2018:63:148–155. https://doi.org/10.1016/j.calphad.2018.09.006">https://doi.org/10.1016/j.calphad.2018.09.00610.1016/j.calphad.2018.09.006
  15. [15] Aili D., et al. Phosphoric acid dynamics in high temperature polymer electrolyte membranes. Journal of The Electrochemical Society 2020:167:134507. https://doi.org/10.1149/1945-7111/abb70c">https://doi.org/10.1149/1945-7111/abb70c10.1149/1945-7111/abb70c
  16. [16] Mifsud C., Fujioka T., Fink D. Extraction and purification of quartz in rock using hot phosphoric acid for in situ cosmogenic exposure dating. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 2013:294:203–207. https://doi.org/10.1016/j.nimb.2012.08.037">https://doi.org/10.1016/j.nimb.2012.08.03710.1016/j.nimb.2012.08.037
  17. [17] Shreiner R. H., Pratt K. W. Primary Standards and Standard Reference Materials for Electrolytic Conductivity. Gaithersburg: NIST, 2004.
  18. [18] McKee C. B. An accurate equation for the electrolytic conductivity of potassium chloride solutions. Journal of Solution Chemistry 2009:38:1155–1172. https://doi.org/10.1007/s10953-009-9436-x">https://doi.org/10.1007/s10953-009-9436-x10.1007/s10953-009-9436-x
  19. [19] MacDonald D. I., Boyack J. R., Density, electrical conductivity, and vapor pressure of concentrated phosphoric acid. Journal of Chemical & Engineering Data 1969:14380–384. https://doi.org/10.1021/je60042a013">https://doi.org/10.1021/je60042a01310.1021/je60042a013
  20. [20] Jiang X., et al. Density, viscosity, and thermal conductivity of electronic grade phosphoric acid. Journal of Chemical & Engineering Data 2011:56(2):205–211. https://doi.org/10.1021/je100938j">https://doi.org/10.1021/je100938j10.1021/je100938j
  21. [21] Majerus A., et al. Thermogravimetric and spectroscopic investigation of the interaction between polybenzimidazole and phosphoric acid. ECS Transactions 2013:50(2):1155–1165. https://doi.org/10.1149/05002.1155ecst">https://doi.org/10.1149/05002.1155ecst10.1149/05002.1155ecst
  22. [22] Conti F., et al. Carbon NMR investigation of the polybenzimidazole-dimethylacetamide interactions in membranes for fuel cells. New Journal of Chemistry 2013:37:152–156. https://doi.org/10.1039/c2nj40728k">https://doi.org/10.1039/c2nj40728k10.1039/C2NJ40728K
  23. [23] Lang S., et al. Diffusion coefficients and VLE data of aqueous phosphoric acid. Journal of Chemical Thermodynamics 2014:68:75–81. https://doi.org/10.1016/j.jct.2013.08.028">https://doi.org/10.1016/j.jct.2013.08.02810.1016/j.jct.2013.08.028
  24. [24] Kazdal T.J., et al. Modelling of the vapour-liquid equilibrium of water and the in situ concentration of H3PO4 in a high temperature proton exchange membrane fuel cell. Journal of Power Sources 2014:249:446–456. https://doi.org/10.1016/j.jpowsour.2013.10.098">https://doi.org/10.1016/j.jpowsour.2013.10.09810.1016/j.jpowsour.2013.10.098
  25. [25] Luff B. B. Heat capacity and enthalpy of phosphoric acid. Journal of Chemical & Engineering Data 1981:26:70–74. https://doi.org/10.1021/je00023a023">https://doi.org/10.1021/je00023a02310.1021/je00023a023
  26. [26] Jones G. P., Lee D. A. The enthalpy of dilution of concentrated orthophosphoric acid. Journal of Chemical Thermodynamics 1970:2:760–761. https://doi.org/10.1016/0021-9614(70)90053-4">https://doi.org/10.1016/0021-9614(70)90053-410.1016/0021-9614(70)90053-4
  27. [27] Fleige M., et al. Evaluation of temperature and electrolyte concentration dependent Oxygen solubility and diffusivity in phosphoric acid. Electrochimica Acta 2016:209:399–406. https://doi.org/10.1016/j.electacta.2016.05.048">https://doi.org/10.1016/j.electacta.2016.05.04810.1016/j.electacta.2016.05.048
  28. [28] Petrowsky M., Frech R. Temperature dependence of ion transport: The compensated Arrhenius equation. Journal of Physical Chemistry B 2009:113:5996–6000. https://doi.org/10.1021/jp810095g">https://doi.org/10.1021/jp810095g10.1021/jp810095g19338318
  29. [29] Eberhardt S. H., et al. Dynamic operation of HT-PEFC: In-operando imaging of phosphoric acid profiles and (re)distribution. Journal of The Electrochemical Society 2015:162:F310–F316. https://doi.org/10.1149/2.0751503jes">https://doi.org/10.1149/2.0751503jes10.1149/2.0751503jes
  30. [30] Boillat P., et al. Evaluation of neutron imaging for measuring phosphoric acid distribution in high temperature PEFCs. Journal of The Electrochemical Society 2014:161:F192–F198. https://doi.org/10.1149/2.023403jes">https://doi.org/10.1149/2.023403jes10.1149/2.023403jes
  31. [31] Conti F., et al. Phase diagram approach to study acid and water uptake of polybenzimidazole-type membranes for fuel cells. ECS Transactions 2016:72:157–167. https://doi.org/10.1149/07208.0157ecst">https://doi.org/10.1149/07208.0157ecst10.1149/07208.0157ecst
  32. [32] Korte C., et al. Uptake of protic electrolytes by polybenzimidazole-type polymers: absorption isotherms and electrolyte/polymer interactions. Journal of Applied Electrochemistry 2015:45:857–871. https://doi.org/10.1007/s10800-015-0855-7">https://doi.org/10.1007/s10800-015-0855-710.1007/s10800-015-0855-7
DOI: https://doi.org/10.2478/rtuect-2021-0034 | Journal eISSN: 2255-8837 | Journal ISSN: 1691-5208
Language: English
Page range: 467 - 478
Published on: Aug 23, 2021
Published by: Riga Technical University
In partnership with: Paradigm Publishing Services
Publication frequency: 2 times per year

© 2021 Jürgen Giffin, Fosca Conti, Carsten Korte, published by Riga Technical University
This work is licensed under the Creative Commons Attribution 4.0 License.