Have a personal or library account? Click to login
Laboratory Testing of Small-Scale Active Solar Façade Module Cover

Laboratory Testing of Small-Scale Active Solar Façade Module

Open Access
|Aug 2021

References

  1. [1] Lazzaroni M., Bianchi Porro G. Preparation, premedication and surveillance. Endoscopy 2003:35:(2):103–111. https://doi.org/10.1055/s-2003-3701210.1055/s-2003-3701212561003
  2. [2] Economidou M., Todeschi V., Bertoldi P., D’Agostino D., Zangheri P., Castellazzi L. Review of 50 years of EU energy efficiency policies for buildings. Energy and Buildings 2020:225:110322. https://doi.org/10.1016/j.enbuild.2020.11032210.1016/j.enbuild.2020.110322
  3. [3] Kumar D., Alam M., Zou P. X. W., Sanjayan J. G., Memon R. A. Comparative analysis of building insulation material properties and performance. Renewable and Sustainable Energy Reviews 2020:131:110038. https://doi.org/10.1016/j.rser.2020.11003810.1016/j.rser.2020.110038
  4. [4] Nashaat B., Waseef A. Responsive Kinetic Façades: An Effective Solution for Enhancing Indoor Environmental Quality in Buildings. The First Memaryat International Conference (MIC 2017) Architecture of the Future: Challenges and Visions. Saudi Arabia, 2017.
  5. [5] Loonen R. C. G. M., Trčka M., Cóstola D., Hensen J. L. M. Climate adaptive building shells: State-of-the-art and future challenges. Renewable and Sustainable Energy Reviews 2013:25:483–493. https://doi.org/10.1016/j.rser.2013.04.01610.1016/j.rser.2013.04.016
  6. [6] Hasselaar B. L. H. Climate adaptive skins: Towards the new energy-efficient façade. WIT Transactions on Ecology and the Environment 2006:99:351–360. https://doi.org/10.2495/RAV06035110.2495/RAV060351
  7. [7] Mols T., Blumberga A., Karklina I. Evaluation of climate adaptive building shells: Multi-criteria analysis. Energy Procedia 2017:128:292–296. https://doi.org/10.1016/j.egypro.2017.09.07710.1016/j.egypro.2017.09.077
  8. [8] Wang J., Beltrán L. O., Kim J. From static to kinetic: A review of acclimated kinetic building envelopes. World Renewable Energy Forum, WREF 2012, Including World Renewable Energy Congress XII and Colorado Renewable Energy Society (CRES) Annual Conference, 2012.
  9. [9] Shahin H. S. M. Adaptive building envelopes of multistory buildings as an example of high performance building skins. Alexandria Engineering Journal 2019:58(1):345–352. https://doi.org/10.1016/j.aej.2018.11.01310.1016/j.aej.2018.11.013
  10. [10] Kuru A., Oldfield P., Bonser S., Fiorito F. Biomimetic adaptive building skins: Energy and environmental regulation in buildings. Energy and Buildings 2019:205:109544. https://doi.org/10.1016/j.enbuild.2019.10954410.1016/j.enbuild.2019.109544
  11. [11] Luo Y., Zhang L., Bozlar M., Liu Z., Guo H., Meggers F. Active building envelope systems toward renewable and sustainable energy. Renewable and Sustainable Energy Reviews 2019:104:470–491. https://doi.org/10.1016/j.rser.2019.01.00510.1016/j.rser.2019.01.005
  12. [12] Jouhara H., Milko J., Danielewicz J., Sayegh M. A., Szulgowska-Zgrzywa M., Ramos J. B., Lester S. P. The performance of a novel flat heat pipe based thermal and PV/T (photovoltaic and thermal systems) solar collector that can be used as an energy-active building envelope material. Energy 2016:108:148–154. https://doi.org/10.1016/j.energy.2015.07.06310.1016/j.energy.2015.07.063
  13. [13] Yu G., Yu J., Hu Y., Cheng X., Liu H., Liu W. Moisture transport analysis for integrated structures of flat plate solar collector and building envelope. Solar Energy 2021:217:145–154. https://doi.org/10.1016/j.solener.2021.01.06810.1016/j.solener.2021.01.068
  14. [14] Elghamry R., Hassan H., Hawwash A. A. A parametric study on the impact of integrating solar cell panel at building envelope on its power, energy consumption, comfort conditions, and CO2 emissions. Journal of Cleaner Production 2020:249:119374. https://doi.org/10.1016/j.jclepro.2019.11937410.1016/j.jclepro.2019.119374
  15. [15] Schneider A., Karin M., Kuhn T. E. Building-Integrated Photovoltaics Moves from the Niche to the Mass Market Industrial manufacture of solar building components and their integration into the building planning process Photovoltaic Building Components: Multiple Advantages for Building Owners Press release. [Online]. [Accessed 14 June 2021]. Available: www.ise.fraunhofer.de
  16. [16] Sari A. Thermal Energy Storage and Applications Using Phase Change Materials. 3rd International Turkic World Conference on Chemical Sciences and Technologies, 2017.
  17. [17] Soibam J. Numerical Investigation of a heat exchanger using phase change materials (PCMs). NTNU, 2017.
  18. [18] Romdhane S. B., Amamou A., Ben Khalifa, Rim, SAÏD, Nejla Mahjoub, Younsi, Zohir and Jemni, Abdelmajid. A review on thermal energy storage using phase change materials in passive building applications. Journal of Building Engineering 2020:32:101563. https://doi.org/10.1016/j.jobe.2020.10156310.1016/j.jobe.2020.101563
  19. [19] Lin Y., Alva G., Fang G. Review on thermal performances and applications of thermal energy storage systems with inorganic phase change materials. Energy 2018:165(PA):685–708. https://doi.org/10.1016/j.energy.2018.09.12810.1016/j.energy.2018.09.128
  20. [20] Baetens R., Jelle B. P., Gustavsen A. phase change materials for building applications: A state-of-the-art review. Energy and Buildings 2010:42(9):1361–1368. https://doi.org/10.1016/j.enbuild.2010.03.02610.1016/j.enbuild.2010.03.026
  21. [21] Sarbu I., Sebarchievici C. A comprehensive review of thermal energy storage. Sustainability (Switzerland) 2018:10: (1):10010191. https://doi.org/10.3390/su1001019110.3390/su10010191
  22. [22] Heier J., Bales C., Martin V. Combining thermal energy storage with buildings – A review. Renewable and Sustainable Energy Reviews 2015:42:1305–1325. https://doi.org/10.1016/j.rser.2014.11.03110.1016/j.rser.2014.11.031
  23. [23] Vanaga R., Blumberga A., Freimanis R., Mols T., Blumberga D. Solar façade module for nearly zero energy building. Energy 2018:157:1025–1034. https://doi.org/10.1016/j.energy.2018.04.16710.1016/j.energy.2018.04.167
  24. [24] Mols T., Vanaga R., Blumberga A. Solar Façade Module for Nearly Zero Energy Building. Extended Test Period. Environmental and Climate Technologies. 2020:24(1):442–453. https://doi.org/10.2478/rtuect-2020-002710.2478/rtuect-2020-0027
  25. [25] Sirmelis R., Vanaga R., Freimanis R., Blumberga A. Solar Façade Module for Nearly Zero Energy Building. Optimization Strategies. Environmental and Climate Technologies 2019:23(3):170–181. https://doi.org/10.2478/rtuect-2019-008710.2478/rtuect-2019-0087
DOI: https://doi.org/10.2478/rtuect-2021-0033 | Journal eISSN: 2255-8837 | Journal ISSN: 1691-5208
Language: English
Page range: 455 - 466
Published on: Aug 6, 2021
Published by: Riga Technical University
In partnership with: Paradigm Publishing Services
Publication frequency: 2 times per year

© 2021 Janis Narbuts, Ruta Vanaga, Ritvars Freimanis, Andra Blumberga, published by Riga Technical University
This work is licensed under the Creative Commons Attribution 4.0 License.