Have a personal or library account? Click to login
Criteria for Choosing Thermal Packaging for Temperature Sensitive Goods Transportation Cover

Criteria for Choosing Thermal Packaging for Temperature Sensitive Goods Transportation

Open Access
|Jul 2021

References

  1. [1] Singh S., Gaikwad K. K., Lee M., Lee Y. S. Temperature sensitive smart packaging for monitoring the shelf life of fresh beef. J. Food Eng. 2018:234:41–49. https://doi.org/10.1016/j.jfoodeng.2018.04.014">https://doi.org/10.1016/j.jfoodeng.2018.04.01410.1016/j.jfoodeng.2018.04.014
  2. [2] Hanson C. M., George A. M., Sawadogo A., Schreiber B. Is freezing in the vaccine cold chain an ongoing issue? A literature review. Vaccine 2017:35(17):2127–2133. https://doi.org/10.1016/j.vaccine.2016.09.070">https://doi.org/10.1016/j.vaccine.2016.09.07010.1016/j.vaccine.2016.09.07028364920
  3. [3] Kartoglu U., Milstien J. Tools and approaches to ensure quality of vaccines throughout the cold chain. Expert Rev. Vaccines 2014:13(7):843–854. https://doi.org/10.1586/14760584.2014.923761">https://doi.org/10.1586/14760584.2014.92376110.1586/14760584.2014.923761474359324865112
  4. [4] Mariano E. B., Gobbo J. A., Camioto F. de C., do N. Rebelatto D. A. CO2 emissions and logistics performance: a composite index proposal. Journal of Cleaner Production 2017:163:166–178. https://doi.org/10.1016/j.jclepro.2016.05.084">https://doi.org/10.1016/j.jclepro.2016.05.08410.1016/j.jclepro.2016.05.084
  5. [5] Pan C., Yu S., Li S. Research on the development mode and evaluation system of green cold chain logistics in China. Chinese Control Conf. CCC. 2017. https://doi.org/10.23919/ChiCC.2017.8028547">https://doi.org/10.23919/ChiCC.2017.802854710.23919/ChiCC.2017.8028547
  6. [6] Wang K., Yang L., Kucharek M. Investigation of the effect of thermal insulation materials on packaging performance. Packaging Technology and Science 2020:33(6):227–236. https://doi.org/10.1002/pts.2500">https://doi.org/10.1002/pts.250010.1002/pts.2500
  7. [7] Vaughan B. A., Webster-Gardiner M. S., Cundari T. R., Gunnoe T. B. A rhodium catalyst for single-step styrene production from benzene and ethylene. Science 2015:348(6233):421–424. https://doi.org/10.1126/science.aaa2260">https://doi.org/10.1126/science.aaa226010.1126/science.aaa226025908817
  8. [8] Pei D., Mo Z.-H., Xu R. W., Zhang S., Wu Y. X. Cross-Linked Quaternized Poly(styrene-b-(ethylene-co-butylene)-b-styrene) for Anion Exchange Membrane: Synthesis, Characterization and Properties. ACS Appl. Mater. Interfaces 2016:8(31):20329–20341. https://doi.org/10.1021/acsami.6b04590">https://doi.org/10.1021/acsami.6b0459010.1021/acsami.6b0459027459593
  9. [9] Wei W., Lv Z., Yang G., Cheng S., Li Y., Wang L. VOCs emission rate estimate for complicated industrial area source using an inverse-dispersion calculation method: A case study on a petroleum refinery in Northern China, Environ. Pollut. 2016:218:681–688. https://doi.org/10.1016/j.envpol.2016.07.062">https://doi.org/10.1016/j.envpol.2016.07.06210.1016/j.envpol.2016.07.06227522407
  10. [10] Lewis E. Environmental Product Declaration. In Lewis E. et al. (eds) Sustainaspeak. Routledge, 2018:106–107. https://doi.org/10.4324/9781315270326-75">https://doi.org/10.4324/9781315270326-7510.4324/9781315270326-75
  11. [11] Song Y. K., Hong S. H., Eo S., Han G. M., Shim W. J. Rapid Production of Micro- And Nanoplastics by Fragmentation of Expanded Polystyrene Exposed to Sunlight. Environ. Sci. Technol. 2020:54(18):11191–11200. https://doi.org/10.1021/acs.est.0c02288">https://doi.org/10.1021/acs.est.0c0228810.1021/acs.est.0c02288
  12. [12] Jovanović B. Ingestion of microplastics by fish and its potential consequences from a physical perspective. Integr. Environ. Assess. Manag. 2017:13(3):510–515. https://doi.org/10.1002/ieam.1913">https://doi.org/10.1002/ieam.191310.1002/ieam.1913
  13. [13] Dekker R., Bloemhof J., Mallidis I. Operations Research for green logistics – An overview of aspects, issues, contributions and challenges. Eur. J. Oper. Res. 2012:219(3):671–679. https://doi.org/10.1016/j.ejor.2011.11.010">https://doi.org/10.1016/j.ejor.2011.11.01010.1016/j.ejor.2011.11.010
  14. [14] Rogerson S. Influence of freight transport purchasing processes on logistical variables related to CO2 emissions: a case study in Sweden. Int. J. Logist. Res. Appl. 2017:20(6):604–623. https://doi.org/10.1080/13675567.2017.1308472">https://doi.org/10.1080/13675567.2017.130847210.1080/13675567.2017.1308472
  15. [15] Lammgård C., Andersson D. Environmental considerations and trade-offs in purchasing of transportation services. Res. Transp. Bus. Manag 2014:10:45–52. https://doi.org/10.1016/j.rtbm.2014.04.003">https://doi.org/10.1016/j.rtbm.2014.04.00310.1016/j.rtbm.2014.04.003
  16. [16] Need T. H. E. et al. Green supply chains: a glimpse into the future? [Online]. [Accessed: 16.04.2021]. Available: https://path.azureedge.net/media/documents/TS_opt_green_supply_chains.pdf
  17. [17] Newland S. Sustainability in Vaccine Packaging Draft. 2011.
  18. [18] Greencellfoam, Greencellfoam. 2021. [Online]. [Accessed: 15.04.2021]. Available: https://greencellfoam.com/
  19. [19] Mariam I., Cho K. Y., Rizvi S. S. H. Thermal properties of starch-based biodegradable foams produced using Supercritical Fluid Extrusion (SCFX). Int. J. Food Prop. 2008:11(2):415–426. https://doi.org/10.1080/10942910701444705">https://doi.org/10.1080/1094291070144470510.1080/10942910701444705
  20. [20] Kalambur S. B., Rizvi S. S. Starch-based nanocomposites by reactive extrusion processing. Polym. Int. 2004:53(10):1413–1416. https://doi.org/10.1002/pi.1478">https://doi.org/10.1002/pi.147810.1002/pi.1478
  21. [21] Kalambur S., Rizvi S. S. H. An overview of starch-based plastic blends from reactive extrusion. J. Plast. Film Sheeting 2006:22(1):39–58. https://doi.org/10.1177/8756087906062729">https://doi.org/10.1177/875608790606272910.1177/8756087906062729
  22. [22] Bruin S. Mycelium: a Building Block for Parkstad Limburg. 2018.
  23. [23] Schmieder S. S. et al. Bidirectional Propagation of Signals and Nutrients in Fungal Networks via Specialized Hyphae, Curr. Biol. 2019:29(2):217–228. https://doi.org/10.1016/j.cub.2018.11.058">https://doi.org/10.1016/j.cub.2018.11.05810.1016/j.cub.2018.11.058
  24. [24] Boswell G. P., Jacobs H., Davidson F. A., Gadd G. M., Ritz K. Growth and function of fungal mycelia in heterogeneous environments. Bull. Math. Biol. 2003:65(3):447–477. https://doi.org/10.1016/S0092-8240(03)00003-X">https://doi.org/10.1016/S0092-8240(03)00003-X10.1016/S0092-8240(03)00003-X
  25. [25] Home – pluumo. [Online]. [Accessed: 29.03.2021]. Available: https://www.pluumo.com/home
  26. [26] Dieckmann E., Nagy B., Yiakoumetti K., Sheldrick L., Cheeseman C. Thermal insulation packaging for cold-chain deliveries made from feathers, Food Packag. Shelf Life 2019:21:1003609. https://doi.org/10.1016/j.fpsl.2019.100360">https://doi.org/10.1016/j.fpsl.2019.10036010.1016/j.fpsl.2019.100360
  27. [27] Braun M. S., Sporer F., Zimmermann S., Wink M. Birds, feather-degrading bacteria and preen glands: The antimicrobial activity of preen gland secretions from turkeys (Meleagris gallopavo) is amplified by keratinase. FEMS Microbiol. Ecol. 2018:94(9):1–14. https://doi.org/10.1093/femsec/fiy117">https://doi.org/10.1093/femsec/fiy11710.1093/femsec/fiy11729901706
  28. [28] Woolcool Thermal Insulated Packaging Company. Food & Pharmaceutical. [Online]. [Accessed: 29.03.2021]. Available: https://www.woolcool.com/
  29. [29] Tuzcu T. M. Hygro-Thermal Properties of Sheep Wool Insulation. 2007.
  30. [30] High Performing Foam Packaging – Green Cell Foam. [Online]. [Accessed: 15.04. 2021]. Available: https://greencellfoam.com/data
  31. [31] Saaty T. L., Sodenkamp M. The Analytic Hierarchy and Analytic Network Measurement Processes: The Measurement of Intangibles. In Zopounidis C., Pardalos P. (eds) Handbook of Multicriteria Analysis. Applied Optimization, vol. 103. Springer, Berlin, Heidelberg, 2010. https://doi.org/10.1007/978-3-540-92828-7_4">https://doi.org/10.1007/978-3-540-92828-7_410.1007/978-3-540-92828-7_4
  32. [32] Saaty T. L. Deriving the ahp 1-9 scale from first principles. Proc. – 6th ISAHP, 2001. https://doi.org/10.13033/isahp.y2001.030">https://doi.org/10.13033/isahp.y2001.03010.13033/isahp.y2001.030
  33. [33] Goepel K. D. Implementing the Analytic Hierarchy Process as a Standard Method for Multi-Criteria Decision Making in Corporate Enterprises – a New AHP Excel Template with Multiple Inputs. Proceedings of the International Symposium on the Analytic Hierarchy Process, 2013. https://doi.org/10.13033/isahp.y2013.047">https://doi.org/10.13033/isahp.y2013.04710.13033/isahp.y2013.047
  34. [34] Adem Esmail B., Geneletti D. Multi-criteria decision analysis for nature conservation: A review of 20 years of applications. Methods Ecol. Evol. 2018:9(1):42–53. https://doi.org/10.1111/2041-210X.12899">https://doi.org/10.1111/2041-210X.1289910.1111/2041-210X.12899
  35. [35] Ishizaka A., Nguyen N. H. Calibrated fuzzy AHP for current bank account selection. Expert Syst. Appl. 2013:40:(9):3775–3783. https://doi.org/10.1016/j.eswa.2012.12.089">https://doi.org/10.1016/j.eswa.2012.12.08910.1016/j.eswa.2012.12.089
  36. [36] Ju Y., Wang A., Liu X. Evaluating emergency response capacity by fuzzy AHP and 2-tuple fuzzy linguistic approach. Expert Syst. Appl. 2012:39(8):6972–6981. https://doi.org/10.1016/j.eswa.2012.01.061">https://doi.org/10.1016/j.eswa.2012.01.06110.1016/j.eswa.2012.01.061
  37. [37] Lin C. N. A fuzzy analytic hierarchy process-based analysis of the dynamic sustainable management index in leisure agriculture. Sustain. 2020:12(13)5395. https://doi.org/10.3390/su12135395">https://doi.org/10.3390/su1213539510.3390/su12135395
  38. [38] Kubler S., Derigent W., Voisin A., Robert J., Le Traon Y., Viedma E. H. Measuring inconsistency and deriving priorities from fuzzy pairwise comparison matrices using the knowledge-based consistency index. Knowledge-Based Syst. 2018:162:147–160. https://doi.org/10.1016/j.knosys.2018.09.015">https://doi.org/10.1016/j.knosys.2018.09.01510.1016/j.knosys.2018.09.015
  39. [39] Singh S., Gaikwad K. K., Lee Y. S. Phase change materials for advanced cooling packaging. Environ. Chem. Lett. 2018:16(3):845–859. https://doi.org/10.1007/s10311-018-0726-7">https://doi.org/10.1007/s10311-018-0726-710.1007/s10311-018-0726-7
  40. [40] PQS Independent type-testing protocol. 2010.
  41. [41] Insulated Packaging Market - Growth, Trends, Forecasts (2020–2025). [Online]. [Accessed: 16.04.2021]. Available: https://www.globenewswire.com/news-release/2020/12/16/2146158/0/en/Insulated-Packaging-Market-Growth-Trends-Forecasts-2020-2025.html
DOI: https://doi.org/10.2478/rtuect-2021-0028 | Journal eISSN: 2255-8837 | Journal ISSN: 1691-5208
Language: English
Page range: 382 - 391
Published on: Jul 16, 2021
Published by: Riga Technical University
In partnership with: Paradigm Publishing Services
Publication frequency: 2 times per year

© 2021 Ilze Vamza, Karlis Valters, Arnis Dzalbs, Edgars Kudurs, Dagnija Blumberga, published by Riga Technical University
This work is licensed under the Creative Commons Attribution 4.0 License.