Have a personal or library account? Click to login
Characteristics Influencing Digital Technology Choice in Digitalization Projects of Energy Industry Cover

Characteristics Influencing Digital Technology Choice in Digitalization Projects of Energy Industry

By:
Open Access
|Jul 2021

References

  1. [1] Park C., Heo W. Review of the changing electricity industry value chain in the ICT convergence era. Journal of Cleaner Production 2020:258:120743. https://doi.org/10.1016/j.jclepro.2020.120743">https://doi.org/10.1016/j.jclepro.2020.12074310.1016/j.jclepro.2020.120743
  2. [2] Brennen J. S., Kreiss D. Digitalization. The international encyclopedia of communication theory and philosophy 2016:1–11. https://doi.org/10.1002/9781118766804.wbiect111">https://doi.org/10.1002/9781118766804.wbiect11110.1002/9781118766804.wbiect111
  3. [3] IEA. Smart Grid Technology Roadmap. Paris: International Energy Agency, 2011.
  4. [4] Rehmani M. H., et al. Integrating renewable energy resources into the smart grid: Recent developments in information and communication technologies. IEEE Transactions on Industrial Informatics 2018:14(7):2814–2825. https://doi.org/10.1109/TII.2018.2819169">https://doi.org/10.1109/TII.2018.281916910.1109/TII.2018.2819169
  5. [5] Digital Transformation: Powering the Oil and Gas Industry. Oil & Gas Journal 2018 [Online]. [Accessed 05.02.2021]. Available: https://www.ogj.com/home/article/17297879/digital-transformation-powering-the-oil-gas-industry
  6. [6] Park C., Kim H. The development structure and impact of information and communication convergence in the energy sector. Ulsan: Korea Energy Economics Institute, 2015.
  7. [7] Yu H., Park K. Research on factors that utilize intelligent technology in the oil and gas sector. Ulsan: Korea Energy Economics Institute, 2017.
  8. [8] Aveva. Digitalisation in Chemicals & Petrochemicals. Paris: Aveva, 2018.
  9. [9] Ghobakhloo M., Fathi M. Industry 4.0 and opportunities for energy sustainability. Journal of Cleaner Production 2021:295:126427. https://doi.org/10.1016/j.jclepro.2021.126427">https://doi.org/10.1016/j.jclepro.2021.12642710.1016/j.jclepro.2021.126427
  10. [10] Ahmad T., Zhang D., Huang C., Zhang H., Dai N., Song Y., Chen H. Artificial intelligence in sustainable energy industry: Status Quo, challenges and opportunities. Journal of Cleaner Production 2021:289:125834. https://doi.org/10.1016/j.jclepro.2021.125834">https://doi.org/10.1016/j.jclepro.2021.12583410.1016/j.jclepro.2021.125834
  11. [11] Jin H., Zhao J. Real-time energy consumption detection simulation of network node in internet of things based on artificial intelligence. Sustainable Energy Technologies and Assessments 2021:44:101004. https://doi.org/10.1016/j.seta.2021.101004">https://doi.org/10.1016/j.seta.2021.10100410.1016/j.seta.2021.101004
  12. [12] BNEF. 2H 2020 Digital Trends in Power, Oil and Gas. New York, BNEF, 2021.
  13. [13] Küfeoglu S., et al. Digitalisation and new business models in energy sector. Working paper, Faculty of Economics, University of Cambridge, 2019. https://doi.org/10.17863/CAM.41226">https://doi.org/10.17863/CAM.41226
  14. [14] Nambisan S., Wright M., Feldman M. The digital transformation of innovation and entrepreneurship: Progress, challenges and key themes. Research Policy 2019:48(8):103773. https://doi.org/10.1016/j.respol.2019.03.018">https://doi.org/10.1016/j.respol.2019.03.01810.1016/j.respol.2019.03.018
  15. [15] Ahmad T., et al. Artificial Intelligence in Sustainable Energy Industry: Status Quo, Challenges and Opportunities. Journal of Cleaner Production 2021:289:125834. https://doi.org/10.1016/j.jclepro.2021.125834">https://doi.org/10.1016/j.jclepro.2021.12583410.1016/j.jclepro.2021.125834
  16. [16] Coskun-Setirek A., Tanrikulu Z. Digital innovations-driven business model regeneration: A process model. Technology in Society 2021:64:101461. https://doi.org/10.1016/j.techsoc.2020.101461">https://doi.org/10.1016/j.techsoc.2020.10146110.1016/j.techsoc.2020.101461
  17. [17] Swan M. Blockchain: Blueprint for a new economy. O’Reilly Media, Inc., 2015.
  18. [18] Ferreira J. J., Fernandes C. I., Ferreira F. A. To be or not to be digital, that is the question: Firm innovation and performance. Journal of Business Research 2019:101:583–590. https://doi.org/10.1016/j.jbusres.2018.11.013">https://doi.org/10.1016/j.jbusres.2018.11.01310.1016/j.jbusres.2018.11.013
  19. [19] Hess T., et al. Options for formulating a digital transformation strategy. MIS Quarterly Executive 2016:15(2):123–139.
  20. [20] Monteiro F., Birkinshaw J. The external knowledge sourcing process in multinational corporations. Strategic Management Journal 2017:38(2):342–362. https://doi.org/10.1002/smj.2487">https://doi.org/10.1002/smj.248710.1002/smj.2487
  21. [21] Siachou E., Vrontis D., Trichina E. Can traditional organizations be digitally transformed by themselves? The moderating role of absorptive capacity and strategic interdependence. Journal of Business Research 2021:124:408– 421. https://doi.org/10.1016/j.jbusres.2020.11.011">https://doi.org/10.1016/j.jbusres.2020.11.01110.1016/j.jbusres.2020.11.011
  22. [22] Berggren C., Magnusson T., Sushandoyo D. Transition pathways revisited: established firms as multi-level actors in the heavy vehicle industry. Research Policy 2015:44(5):1017–1028. https://doi.org/10.1016/j.respol.2014.11.009">https://doi.org/10.1016/j.respol.2014.11.00910.1016/j.respol.2014.11.009
  23. [23] Müller J. M. Antecedents to digital platform usage in Industry 4.0 by established manufacturers. Sustainability 2019:11(4):1121. https://doi.org/10.3390/su11041121">https://doi.org/10.3390/su1104112110.3390/su11041121
  24. [24] Park C., Lee D. Analysis on new types of electric power businesses using a morphological box. Energy & Environment 2021:32(1):113–133. https://doi.org/10.1177/0958305X20919413">https://doi.org/10.1177/0958305X2091941310.1177/0958305X20919413
  25. [25] IEA. Digitalization and Energy. Paris, IEA, 2017.
  26. [26] Mutlinomial Logistic Regression. R Data Analysis Examples [Online]. [Accessed 31.01.2021]. Available: https://stats.idre.ucla.edu/r/dae/multinomial-logistic-regression/
  27. [27] Long J. S. Regression models for categorical and limited dependent variables (Vol. 7). Sage, 1997.
  28. [28] Starkweather J., Moske A. K. Multinomial logistic regression. 2011 [Online]. [Accessed 31.01.2021]. Available: https://it.unt.edu/sites/default/files/mlr_jds_aug2011.pdf
  29. [29] Interpreting exp(B) in multinomial logistic regression [Online]. [Accessed 03.02.2021]. Available: https://stats.stackexchange.com/questions/17196/interpreting-expb-in-multinomial-logistic-regression
DOI: https://doi.org/10.2478/rtuect-2021-0026 | Journal eISSN: 2255-8837 | Journal ISSN: 1691-5208
Language: English
Page range: 356 - 366
Published on: Jul 16, 2021
Published by: Riga Technical University
In partnership with: Paradigm Publishing Services
Publication frequency: 2 times per year

© 2021 Chankook Park, Minkyu Kim, published by Riga Technical University
This work is licensed under the Creative Commons Attribution 4.0 License.