Have a personal or library account? Click to login
Importance of Energy Efficiency in Manufacturing Industries for Climate and Competitiveness Cover

Importance of Energy Efficiency in Manufacturing Industries for Climate and Competitiveness

Open Access
|Jun 2021

References

  1. [1] European Commission. Energy efficiency first: accelerating towards a 2030 objective of 32.5%. 25 September 2019. [Online]. Available: https://ec.europa.eu/info/news/energy-efficiency-first-accelerating-towards-2030-objective-2019-sep-25_en
  2. [2] Eurostat. Complete energy balances [nrg_bal_c]. [Online]. Available: https://appsso.eurostat.ec.europa.eu/nui/show.do?dataset=nrg_bal_c&lang=en
  3. [3] European Commission. REPORT FROM THE COMMISSION TO THE EUROPEAN PARLIAMENT AND THE COUNCIL 2018 assessment of the progress made by Member States towards the national energy efficiency targets for 2020 and towards the implementation of the Energy Efficiency Directive as required by Article 24(3) of the Energy Efficiency Directive 2012/27/EU pp. 1–19, 2020, [Online]. Available: https://eur-lex.europa.eu/legal-content/EN/TXT/?qid=1574945294711&uri=CELEX:52019DC0224
  4. [4] Dolge K., Kubule A., Rozakis S., Gulbe I., Blumberga D., Krievs O. Towards Industrial Energy Efficiency Index, Environmental and Climate Technologies 2020:24(1):419–430. https://doi.org/10.2478/rtuect-2020-002510.2478/rtuect-2020-0025
  5. [5] Dolge K., Kubule A., Blumberga D. Composite index for energy efficiency evaluation of industrial sector: subsectoral comparison. Environmental and Sustainability Indicators 2020:8:100062. https://doi.org/10.1016/j.indic.2020.10006210.1016/j.indic.2020.100062
  6. [6] Kubule A., Locmelis K., Blumberga D. Analysis of the results of national energy audit program in Latvia. Energy 2020:202:117679. https://doi.org/10.1016/j.energy.2020.11767910.1016/j.energy.2020.117679
  7. [7] Locmelis K., Blumberga A., Bariss U., Blumberga D., Balode L. Industrial Energy Efficiency Towards Green Deal Transition. Case of Latvia. Environmental and Climate Technologies 2021:25(1):42–57. https://doi.org/10.2478/rtuect-2021-000410.2478/rtuect-2021-0004
  8. [8] Kubule A., Blumberga D. Sustainability Analysis of Manufacturing Industry. Environmental and Climate Technologies 2019:23(3):159–169. https://doi.org/10.2478/rtuect-2019-008610.2478/rtuect-2019-0086
  9. [9] Timma L., Zoss T., Blumberga D. Life after the financial crisis. Energy intensity and energy use decomposition on sectorial level in Latvia. Applied Energy 2016:162:1586–1592. https://doi.org/10.1016/j.apenergy.2015.04.02110.1016/j.apenergy.2015.04.021
  10. [10] Miskinis V., Galinis A., Konstantinaviciute I., Lekavicius V. Comparative analysis of energy efficiency trends and driving factors in the Baltic States. Energy Strategy Reviews 2020:30:100514. https://doi.org/10.1016/j.esr.2020.10051410.1016/j.esr.2020.100514
  11. [11] Ang B. W. Decomposition analysis for policymaking in energy: which is the preferred method? Energy Policy 2004:32(9):1131–1139. https://doi.org/10.1016/S0301-4215(03)00076-410.1016/S0301-4215(03)00076-4
  12. [12] Chontanawat J. Driving Forces of Energy-Related CO2 Emissions Based on Expanded IPAT Decomposition Analysis: Evidence from ASEAN and Four Selected Countries. Energies 2019:12(4):764. https://doi.org/10.3390/en1204076410.3390/en12040764
  13. [13] Economidou M., Román-Collado R. Assessing the progress towards the EU energy efficiency targets using index decomposition analysis in 2005–2016. Publications Office of the European Union, 2019. https://doi.org/10.2760/61167
  14. [14] European Commission. Report From The Commission To The European Parliament, The Council, The European Economic And Social Committee And The Committee Of The Regions. Cambridge University Press, 2019.
  15. [15] Ang W. B., Liu N. Energy decomposition analysis: IEA model versus other methods. Energy Policy 2007:35(3):1426–1432. https://doi.org/10.1016/j.enpol.2006.04.02010.1016/j.enpol.2006.04.020
  16. [16] United Nations Industrial Development Organization. Structural decompositions of energy consumption, energy intensity, emissions and emission intensity A sectoral perspective: empirical evidence from WIOD over 1995 to 2009. Vienna, 2015. Available: https://www.unido.org/sites/default/files/2015-12/WP_11_0.pdf
  17. [17] Odysee-Mure. Understanding variation in energy consumption. Methodology, 2020. [Online]. Available: https://www.indicators.odyssee-mure.eu/php/odyssee-decomposition/documents/interpretation-of-the-energy-consumption-variation-glossary.pdf
  18. [18] Talaei A., Gemechu E., Kumar A. Key factors affecting greenhouse gas emissions in the Canadian industrial sector: A decomposition analysis. Journal of Cleaner Production 2020:246:119026. https://doi.org/10.1016/j.jclepro.2019.11902610.1016/j.jclepro.2019.119026
  19. [19] Ang W. B. The LMDI approach to decomposition analysis: a practical guide. Energy Policy 2005:33(7):867–871. https://doi.org/10.1016/j.enpol.2003.10.01010.1016/j.enpol.2003.10.010
  20. [20] Liu N., Ang W. B. Factors shaping aggregate energy intensity trend for industry: Energy intensity versus product mix. Energy Economic 2007:29:609–635. https://doi.org/10.1016/j.eneco.2006.12.00410.1016/j.eneco.2006.12.004
  21. [21] Voigt S., De Cian E., Schymura M.,Verdolini E. Energy intensity developments in 40 major economies: Structural change or technology improvement? Energy Economics 2014:41:47–62. https://doi.org/10.1016/j.eneco.2013.10.01510.1016/j.eneco.2013.10.015
  22. [22] De Boer P., Rodrigues J. F. D. Decomposition analysis: when to use which method? Economic Systems Research 2019:32(1)1–28. https://doi.org/10.1080/09535314.2019.165257110.1080/09535314.2019.1652571
  23. [23] Ang B. W., Xu X. Y. Tracking industrial energy efficiency trends using index decomposition analysis, Energy Economics 2013:40:1014–1021. https://doi.org/10.1016/j.eneco.2013.05.01410.1016/j.eneco.2013.05.014
  24. [24] Norman J. B. Measuring improvements in industrial energy efficiency: A decomposition analysis applied to the UK. Energy 2017:137:1144–1151. https://doi.org/10.1016/j.energy.2017.04.16310.1016/j.energy.2017.04.163
  25. [25] Trotta G. Assessing energy efficiency improvements and related energy security and climate benefits in Finland: An ex post multi-sectoral decomposition analysis. Energy Economics 2020:86:104640. https://doi.org/10.1016/j.eneco.2019.10464010.1016/j.eneco.2019.104640
  26. [26] Eurostat. Energy balance guide - Methodology guide for the construction of energy balances & Operational guide for the energy balance builder tool, 2019:52. [Online]. Available: https://ec.europa.eu/eurostat/documents/38154/4956218/
  27. [27] Central Statistics Bureau of Latvia. Entrepreneurship indicators of enterprises (SBG010), 2020. [Accessed 10.02.2020]. https://data.stat.gov.lv/pxweb/lv/OSP_PUB/START__ENT__UF__UFR/UFR010
  28. [28] Central Statistics Bureau of Latvia, Producer price changes in industry sector, as per cent of previous year [RCG020]. [Accessed 21.03.2021]. https://data.stat.gov.lv/pxweb/lv/OSP_PUB/START__VEK__RC__RCI/RCI020
  29. [29] Central Statistics Bureau of Latvia, Volume indices of industrial production [RUG031]. [Accessed 21.03.2021]. https://data.stat.gov.lv/pxweb/lv/OSP_PUB/START__NOZ__RU__RUI/RUI020m/
  30. [30] Eurostat. Glossary: Base year, 2021. [Online]. [Accessed 07.06.2021]. Available: https://ec.europa.eu/eurostat/statistics-explained/SEPDF/cache/13447.pdf
  31. [31] Ministry of Economics of the Republic of Latvia. Macroeconomic Review of Latvia, 2020. [Online]. Available: https://www.em.gov.lv/en/media/1477/download
  32. [32] Central Statistics Bureau of Latvia, Export unit value and import price index weights by sections and divisions of CPA by Index, Market area and Time period [RCE010c]. [Accessed 21.03.2021]. https://data.stat.gov.lv/pxweb/en/OSP_PUB/START__VEK__RC__RCE/RCE010c
  33. [33] Central Statistics Bureau of Latvia, Volume indices and changes in volume of construction production by economic activity [BU010c]. https://data.stat.gov.lv/pxweb/en/OSP_PUB/START__NOZ__BU__BUP/BUP010c
  34. [34] Fastmarkets. Latvian steelmaker Liepajas Metalurgs applies for bankruptcy. https://www.metalbulletin.com/Article/3275040/Latvian-steelmaker-Liepajas-Metalurgs-applies-for-bankruptcy.html
  35. [35] Reuter M., Patel M., Eichhammer W. Applying ex post index decomposition analysis to final energy consumption for evaluating European energy efficiency policies and targets, Energy Efficiency 2019:12:1329–1357. https://doi.org/10.1007/s12053-018-09772-w10.1007/s12053-018-09772-w
  36. [36] Locmelis K., Blumberga D., Bariss U. Energy efficiency in large industrial plants. Legislative aspects, Energy Procedia 2018:147:202–206. https://doi.org/10.1016/j.egypro.2018.07.05810.1016/j.egypro.2018.07.058
  37. [37] Saeima. Energy Efficiency Law, 2016. [Online]. Available: https://likumi.lv/ta/id/280932-energoefektivitates-likums
  38. [38] Locmelis K., Blumberga D., Blumberga A., Kubule A. Benchmarking of Industrial Energy Efficiency. Outcomes of an Energy Audit Policy Program. Energies 2020:13(9):2210. https://doi.org/10.3390/en1309221010.3390/en13092210
  39. [39] AS Valmieras Stikla Šķiedra. Consolidated financial statements and separate financial statements (Konsolidētais finanšu pārskats un atsevišķais finanšu pārskats), 2017. [Online]. Available: https://www.nasdaqbaltic.com/market/upload/reports/vss/2018_ar_lv_eur_con_ias.pdf
  40. [40] AS Valmieras Stikla Šķiedra. Consolidated financial statements and separate financial statements (Konsolidētais finanšu pārskats un atsevišķais finanšu pārskats), 2018. [Online]. Available: https://www.nasdaqbaltic.com/market/upload/reports/vss/2018_ar_lv_eur_con_ias.pdf
  41. [41] ODYSSEE-MURE. Energy efficiency trends and policies. Latvia. Energy profile. 2020. [Online]. Available: https://www.odyssee-mure.eu/publications/efficiency-trends-policies-profiles/latvia.html#industry
  42. [42] Rural Support Service of the Republic of Latvia, State & EU Support. [Online]. Available: https://www.lad.gov.lv/lv/atbalsta-veidi/projekti-un-investicijas/lap-investiciju-pasakumi/
DOI: https://doi.org/10.2478/rtuect-2021-0022 | Journal eISSN: 2255-8837 | Journal ISSN: 1691-5208
Language: English
Page range: 306 - 317
Published on: Jun 28, 2021
Published by: Riga Technical University
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2021 Kristiāna Dolge, Reinis Āzis, Peter D. Lund, Dagnija Blumberga, published by Riga Technical University
This work is licensed under the Creative Commons Attribution 4.0 License.