[1] Chery D., Lair V., Cassir M. Overview on CO2 valorization: challenge of molten carbonates. Frontiers in Energy Research 2015:3:43. <a href="https://doi.org/10.3389/fenrg.2015.0004310.3389/fenrg.2015.00043" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3389/fenrg.2015.0004310.3389/fenrg.2015.00043</a>
[3] European Commission. A European Green Deal [Online]. [Accessed 16.10.2020]. Available: https://ec.europa.eu/info/strategy/priorities-2019-2024/european-green-deal_en
[5] European Commission. 2030 climate and energy framework [Online]. [Accessed 10.01.2021]. Available: https://ec.europa.eu/clima/policies/strategies/2030_en
[6] Statista. Share of global carbon dioxide (CO2) emissions from fossil fuels and cements as of 2020, by economic sector [Online]. [Accessed 18.09.2020]. Available: https://www.statista.com/statistics/1129656/global-share-of-co2-emissions-from-fossil-fuel-and-cement/
[11] Central Statistical Bureau Databases. Air emissions accounts [Online]. [Accessed 7.09.2020]. Available: https://data1.csb.gov.lv/pxweb/lv/vide/vide__vide__ikgad/VIG070.px/table/tableViewLayout1/ (in Latvian)
[13] Kudurs E., et al. Are Industries Open for Renewable Energy? Environmental and Climate Technologies 2020:24(3):447–456. <a href="https://doi.org/10.2478/rtuect-2020-011510.2478/rtuect-2020-0115" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.2478/rtuect-2020-011510.2478/rtuect-2020-0115</a>
[14] Latvian Center for Environment, Geology and Meteorology. 2020. gadā iesniegtās siltumnīcefekta gāzu inventarizācijas kopsavilkums (Greenhouse gases inventory summary, submitted in 2020.) Riga: LVGMC, 2020. (in Latvian)
[16] Phoenix Initiative. A European Integrated Approach to CO2 Valorisation [Online]. [Accessed 06.03.2021]. Available: https://www.phoenix-co2-valorisation.eu/lw_resource/datapool/systemfiles/cbox/56/live/lw_datei/flyer-phoenix_180215_v6.pdf
[17] Olajire A. A. Valorization of greenhouse carbon dioxide emissions into value-added products by catalytic processes. Journal of CO2 Utilization 2013:3–4:74–92. <a href="https://doi.org/10.1016/j.jcou.2013.10.00410.1016/j.jcou.2013.10.004" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.jcou.2013.10.00410.1016/j.jcou.2013.10.004</a>
[20] EU Open Data Portal. CORDIS - EU research projects under Horizon 2020 (2014-2020) [Online]. [Accessed 15.10.2020]. Available: https://data.europa.eu/euodp/en/data/dataset/cordisH2020projects
[21] Cascio E. L., et al. Key performance indicators for integrated natural gas pressure reduction stations with energy recovery. Energy Conversion and Management 2018:164:219–229. <a href="https://doi.org/10.1016/j.enconman.2018.02.08910.1016/j.enconman.2018.02.089" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.enconman.2018.02.08910.1016/j.enconman.2018.02.089</a>
[22] Pacheco K. A., et al. Multi criteria decision analysis for screening carbon dioxide conversion products. Journal of CO2 Utilization 2021:43:101391. <a href="https://doi.org/10.1016/j.jcou.2020.10139110.1016/j.jcou.2020.101391" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.jcou.2020.10139110.1016/j.jcou.2020.101391</a>
[23] Chauvy R., et al. Comparison of multi-criteria decision-analysis methods for selecting carbon dioxide utilization products. Sustainable Production and Consumption 2020:24:194–210. <a href="https://doi.org/10.1016/j.spc.2020.07.00210.1016/j.spc.2020.07.002" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.spc.2020.07.00210.1016/j.spc.2020.07.002</a>
[24] Styring P., et al. Carbon Capture and Utilisation in the green economy. Using CO2 to manufacture fuel, chemicals and materials. United Kingdom: CO2Chem Publishing, 2012.
[25] Wang R., Peng B., Huang K. The research progress of CO2 sequestration by algal bio-fertilizer in China. Journal of CO2 Utilization 2015:11:67–70. <a href="https://doi.org/10.1016/j.jcou.2015.01.00710.1016/j.jcou.2015.01.007" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.jcou.2015.01.00710.1016/j.jcou.2015.01.007</a>
[27] Anto S., et al. Algae as green energy reserve: Technological outlook on biofuel production. Chemosphere 2020:242:125079. <a href="https://doi.org/10.1016/j.chemosphere.2019.12507910.1016/j.chemosphere.2019.12507931678847" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.chemosphere.2019.12507910.1016/j.chemosphere.2019.12507931678847</a>
[29] Pastare L., Romagnoli F. Life Cycle Cost Analysis of Biogas Production from Cerathophyllum demersum, Fucus vesiculosus and Ulva intestinalis in Latvian Conditions. Environmental and Climate Technologies 2019:23(2):258– 271. <a href="https://doi.org/10.2478/rtuect-2019-006710.2478/rtuect-2019-0067" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.2478/rtuect-2019-006710.2478/rtuect-2019-0067</a>
[30] Ievina B., Romagnoli F. Potential of Chlorella Species as Feedstock for Bioenergy Production: A Review. Environmental and Climate Technologies 2020:24(2):203–220. <a href="https://doi.org/10.2478/rtuect-2020-006710.2478/rtuect-2020-0067" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.2478/rtuect-2020-006710.2478/rtuect-2020-0067</a>
[32] Nerantzis E., et al. Winemaking process engineering: On line fermentation monitoring - Sensors and equipment. e-Journal of Science & Technology 2007:29–36.
[33] Sanjeev K., Ramesh M. N. Low Oxygen and Inert Gas Processing of Foods. Critical Reviews in Food Science and Nutrition 2007:46(5):423–451. <a href="https://doi.org/10.1080/1040839050021567010.1080/1040839050021567016891213" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1080/1040839050021567010.1080/1040839050021567016891213</a>
[34] Ghiat I., et al. CO2 utilisation in agricultural greenhouses: A novel ‘plant to plant’ approach driven by bioenergy with carbon capture systems within the energy, water and food Nexus. Environmental Conversion and Management 2021:228:1136668. <a href="https://doi.org/10.1016/j.enconman.2020.11366810.1016/j.enconman.2020.113668" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.enconman.2020.11366810.1016/j.enconman.2020.113668</a>
[35] Zhang X., et al. CFD Modelling of Finned-tube CO2 Gas Cooler for Refrigeration Systems. Energy Procedia 2019:161:275–282. <a href="https://doi.org/10.1016/j.egypro.2019.02.09210.1016/j.egypro.2019.02.092" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.egypro.2019.02.09210.1016/j.egypro.2019.02.092</a>
[36] Zhang Z., et al. Simulation and techno-economic assessment of bio-methanol production from pine biomass, biochar and pyrolysis oil. Sustainable Energy Technologies and Assessments 2021:44:101002. <a href="https://doi.org/10.1016/j.seta.2021.10100210.1016/j.seta.2021.101002" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.seta.2021.10100210.1016/j.seta.2021.101002</a>