Have a personal or library account? Click to login
Waste to Energy: Calorific Improvement of Municipal Solid Waste through Biodrying Cover

Waste to Energy: Calorific Improvement of Municipal Solid Waste through Biodrying

Open Access
|May 2021

References

  1. [1] Porsnovs D., Ansone-Bertina L., Kviesis J., Āriņa D., Klavins M. Biochar from Waste Derived Fuels as Low-Cost Adsorbent for Waste Hydrocarbons. <em>Environmental and Climate Technologies</em> 2021:24(3):174–187. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.2478/rtuect-2020-0095" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.2478/rtuect-2020-0095</a>">https://doi.org/10.2478/rtuect-2020-0095</ext-link><dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.2478/rtuect-2020-0095" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.2478/rtuect-2020-0095</a></dgdoi:pub-id>
  2. [2] Rada E. C., Ragazzi M., Panaitescu V., Apostol T. Energy From Waste: The Role Of Bio-Drying. <em>UPB Scientific Bulletin Series C: Electrical Engineering</em> 2015:67(2):69–72.
  3. [3] Huiliñir C., Pérez J. A new model of batch biodrying of sewage sludge, Part 2: Model calibration and validation. <em>Drying Technology</em> 2017:35(6):666–679. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1080/07373937.2016.1206124" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1080/07373937.2016.1206124</a>">https://doi.org/10.1080/07373937.2016.1206124</ext-link><dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1080/07373937.2016.1206124" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1080/07373937.2016.1206124</a></dgdoi:pub-id>
  4. [4] Tom A. P., Pawels R., Haridas A. Biodrying process: A sustainable technology for treatment of municipal solid waste with high moisture content. <em>Waste Management</em> 2016:49:64–72. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.wasman.2016.01.004" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.wasman.2016.01.004</a>">https://doi.org/10.1016/j.wasman.2016.01.004</ext-link><dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1016/j.wasman.2016.01.004" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.wasman.2016.01.004</a></dgdoi:pub-id>
  5. [5] Āriņa D., Bendere R., Denafas G., Kalnačs J., Kriipsalu M. Characterization of Refuse Derived Fuel Production from Municipal Solid Waste: The Case Studies in Latvia and Lithuania. <em>Environmental and Climate Technologies</em> 2021:24(3):112–118. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.2478/rtuect-2020-0090" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.2478/rtuect-2020-0090</a>">https://doi.org/10.2478/rtuect-2020-0090</ext-link><dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.2478/rtuect-2020-0090" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.2478/rtuect-2020-0090</a></dgdoi:pub-id>
  6. [6] Shangdiar S., Lin Y. C., Cheng P. C., Chou F. C., Wu W. D. Development of biochar from the refuse derived fuel (RDF) through organic / inorganic sludge mixed with rice straw and coconut shell. <em>Energy</em> 2021:215(B):119151. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.energy.2020.119151" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.energy.2020.119151</a>">https://doi.org/10.1016/j.energy.2020.119151</ext-link><dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1016/j.energy.2020.119151" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.energy.2020.119151</a></dgdoi:pub-id>
  7. [7] Białowiec A., Micuda M., Koziel J. A. Waste to Carbon: Densification of Torrefied Refuse-Derived Fuel. <em>Energies</em> 2018:11(11):3233. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.3390/en11113233" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/en11113233</a>">https://doi.org/10.3390/en11113233</ext-link><dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.3390/en11113233" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.3390/en11113233</a></dgdoi:pub-id>
  8. [8] Den B., Emilia E., Sebastian M. How to improve the quality of waste derived fuels. <em>Journal of Solid Waste Technology &amp; Management</em> 2015:14(2).
  9. [9] Ragazzi M., Rada E. C. RDF/SRF evolution and MSW bio-drying. <em>WIT Transactions on Ecology and the Environment</em> 2012:163(6):199–208. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="http://dx.doi.org/<a href="https://doi.org/10.2495/WM120191" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.2495/WM120191</a>">http://dx.doi.org/<a href="https://doi.org/10.2495/WM120191" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.2495/WM120191</a></ext-link><dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.2495/WM120191" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.2495/WM120191</a></dgdoi:pub-id>
  10. [10] Velis C. A., Longhurst P. J., Drew G. H., Smith R., Pollard S. J. T. Biodrying for mechanical-biological treatment of wastes: A review of process science and engineering. <em>Bioresource Technology</em> 2009:100(11):2747–2761. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.biortech.2008.12.026" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.biortech.2008.12.026</a>">https://doi.org/10.1016/j.biortech.2008.12.026</ext-link><dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1016/j.biortech.2008.12.026" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.biortech.2008.12.026</a></dgdoi:pub-id>
  11. [11] Adani F., Baido D., Calcaterra E., Genevini P. The influence of biomass temperature on biostabilization-biodrying of municipal solid waste. <em>Bior. Tech.</em> 2002:83(3):173–179. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/S0960-8524(01)00231-0" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/S0960-8524(01)00231-0</a>">https://doi.org/10.1016/S0960-8524(01)00231-0</ext-link><dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1016/S0960-8524(01)00231-0" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/S0960-8524(01)00231-0</a></dgdoi:pub-id>
  12. [12] Sugni M., Calcaterra E., Adani F. Biostabilization-biodrying of municipal solid waste by inverting air-flow. <em>Bioresource Technology</em> 2005:96(12):1331–1337. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.biortech.2004.11.016" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.biortech.2004.11.016</a>">https://doi.org/10.1016/j.biortech.2004.11.016</ext-link><dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1016/j.biortech.2004.11.016" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.biortech.2004.11.016</a></dgdoi:pub-id><dgpm:pub-id xmlns:dgpm="http://degruyter.com/resources/fetched-pubmed-id" pub-id-type="pmid">15792579</dgpm:pub-id>
  13. [13] Adi Sesotyo P., Nur M., Endro Suseno J. Plasma gasification modeling of municipal solid waste from Jatibarang Landfill in Semarang, Indonesia: Analyzing its performance parameters for energy potential. <em>E3S Web of Conferences</em> 2019:125:14009. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1051/e3sconf/201912514009" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1051/e3sconf/201912514009</a>">https://doi.org/10.1051/e3sconf/201912514009</ext-link><dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1051/e3sconf/201912514009" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1051/e3sconf/201912514009</a></dgdoi:pub-id>
  14. [14] Oktiawan W., Wisnu Wardhana I., Sutrisno E., Gorat D., Rizky Rizaldianto A. Municipal Solid Waste Management Using Bioreactor Landfill in the Treatment of Organic Waste from Jatibarang Landfill, Semarang-Indonesia. <em>E3S Web of Conferences</em> 2019:125:07002. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1051/e3sconf/201912507002" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1051/e3sconf/201912507002</a>">https://doi.org/10.1051/e3sconf/201912507002</ext-link><dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1051/e3sconf/201912507002" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1051/e3sconf/201912507002</a></dgdoi:pub-id>
  15. [15] Wardhani A. K., Sutrisno E., Purwono P. Pengaruh Variasi Debit Aerasi Terhadap Kadar Selulosa Dan Nilai Kalor Pada Metode Biodrying Municipal Solid Waste (Msw). Universitas Diponegoro, 2017.
  16. [16] Fadlilah N., Yudihanto G. Pemanfaatan Sampah Makanan Menjadi Bahan Bakar Alternatif dengan Metode Biodrying. <em>Teknik POMITS</em> 2013:2(2):289–293.
  17. [17] Rahman. Uji Keragaan Biopelet dari Biomassa Limbah Sekam Padi (Oryza sativa sp) sebagai Bahan Bakar Alternatif Terbarukan. Institut Pertanian Bogor, 2011
  18. [18] Colomer-Mendoza F. J., Herrera-Prats L., Robles-Martınez F., Gallardo-Izquierdo A., Pina-Guzman A. B. Effect of airflow on biodrying of gardening wastes in reactors. <em>Journal of Environmental Sciences</em> 2013:25(5):865–872. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/S1001-0742(12)60123-5" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/S1001-0742(12)60123-5</a>">https://doi.org/10.1016/S1001-0742(12)60123-5</ext-link><dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1016/S1001-0742(12)60123-5" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/S1001-0742(12)60123-5</a></dgdoi:pub-id>
  19. [19] Purwono P., Hadiwidodo M., Rezagama A. Penerapan Teknologi Biodrying dalam Pengolahan Sampah High Water Content Menuju Zero Leachate. <em>J. Presipitasi</em> 2016:13(2):75–80. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.14710/presipitasi.v13i2.75-80" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.14710/presipitasi.v13i2.75-80</a>">https://doi.org/10.14710/presipitasi.v13i2.75-80</ext-link><dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.14710/presipitasi.v13i2.75-80" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.14710/presipitasi.v13i2.75-80</a></dgdoi:pub-id>
  20. [20] Pérez J., Muñoz-Dorado J., Rubia de la T., Martínez J. Biodegradation and biological treatments of cellulose, hemicellulose and lignin: An overview. <em>International Microbiology</em> 2002:5(2):53–63. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1007/s10123-002-0062-3" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/s10123-002-0062-3</a>">https://doi.org/10.1007/s10123-002-0062-3</ext-link><dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1007/s10123-002-0062-3" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/s10123-002-0062-3</a></dgdoi:pub-id>
  21. [21] Goering H. K., van Soest P. J. <em>Forgae fibre analysis</em>. USDA Agricultural Handbook, 1970.
  22. [22] Navaee-Ardeh S., Bertrand F., Stuart R. Key variables analysis of a novel continuous biodrying process for drying mixed sludge. <em>Bioresource Technology</em> 2010:101(10):3379–3387. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.biortech.2009.12.037" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.biortech.2009.12.037</a>">https://doi.org/10.1016/j.biortech.2009.12.037</ext-link><dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1016/j.biortech.2009.12.037" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.biortech.2009.12.037</a></dgdoi:pub-id>
  23. [23] Doi R. H. Cellulases of mesophilic microorganisms: Cellulosome and noncellulosome producers. <em>Annals of the New York Academy of Sciences</em> 2008:1125(1):267–279. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1196/annals.1419.002" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1196/annals.1419.002</a>">https://doi.org/10.1196/annals.1419.002</ext-link><dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1196/annals.1419.002" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1196/annals.1419.002</a></dgdoi:pub-id>
  24. [24] Reddy Jayarama P. Energy Recovery from Municipal Solid Waste by Thermal Conversion Technologies. 1<sup>st</sup> ed. London: CRC Press, 2016. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1201/b21307" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1201/b21307</a>">https://doi.org/10.1201/b21307</ext-link><dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1201/b21307" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1201/b21307</a></dgdoi:pub-id>
  25. [25] Liang C., Das K. C., McClendon W. R. The influence of temperature and moisture contents regimes on the aerobic microbial activity of a biosolids composting blend. <em>Bioresource Technology</em> 2003:86(2):131–137. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/S0960-8524(02)00153-0" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/S0960-8524(02)00153-0</a>">https://doi.org/10.1016/S0960-8524(02)00153-0</ext-link><dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1016/S0960-8524(02)00153-0" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/S0960-8524(02)00153-0</a></dgdoi:pub-id>
  26. [26] Perazzini H., Freire F. B., Freire F. B., Freire T. J. Thermal Treatment of Solid Wastes Using Drying Technologies : A Review. <em>Drying Technology</em> 2016:34(1):37–41. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1080/07373937.2014.995803" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1080/07373937.2014.995803</a>">https://doi.org/10.1080/07373937.2014.995803</ext-link>.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1080/07373937.2014.995803" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1080/07373937.2014.995803</a></dgdoi:pub-id>
  27. [27] Zhang D., He P., Jin T., Shao L. Bio-drying of municipal solid waste with high water content by aeration procedures regulation and inoculation. <em>Bioresource Technology</em> 2008:99(18):8796–8802. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.biortech.2008.04.046" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.biortech.2008.04.046</a>">https://doi.org/10.1016/j.biortech.2008.04.046</ext-link><dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1016/j.biortech.2008.04.046" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.biortech.2008.04.046</a></dgdoi:pub-id>
  28. [28] Sen R., Annachhatre P. A. Effect of air flow rate and residence time on biodrying of cassava peel waste. <em>International Journal of Environmental Technology and Management</em> 2015:18:1:9–29. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1504/IJETM.2015.068414" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1504/IJETM.2015.068414</a>">https://doi.org/10.1504/IJETM.2015.068414</ext-link><dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1504/IJETM.2015.068414" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1504/IJETM.2015.068414</a></dgdoi:pub-id>
  29. [29] Song X., Ma J., Gao J., Liu Y., Hao Y., Li W., <em>et al</em>. Optimization of bio-drying of kitchen waste: inoculation, initial moisture content and bulking agents. <em>Journal of Material Cycles and Waste Management</em> 2017:19(1):496–504. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1007/s10163-015-0450-3" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/s10163-015-0450-3</a>">https://doi.org/10.1007/s10163-015-0450-3</ext-link><dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1007/s10163-015-0450-3" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/s10163-015-0450-3</a></dgdoi:pub-id>
  30. [30] Sadaka S, Vandevender K, Costello T, Sharara M. Partial Composting for Biodrying Organic Materials 2010. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.13140/2.1.4767.7123" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.13140/2.1.4767.7123</a>">https://doi.org/10.13140/2.1.4767.7123</ext-link>
  31. [31] Tambone F., Scaglia B., Scotti S., Adani F. Bioresource Technology Effects of biodrying process on municipal solid waste properties. <em>Bioresource Technology</em> 2011:102(16):7443–7450. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.biortech.2011.05.010" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.biortech.2011.05.010</a>">https://doi.org/10.1016/j.biortech.2011.05.010</ext-link><dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1016/j.biortech.2011.05.010" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.biortech.2011.05.010</a></dgdoi:pub-id>
  32. [32] Dongqing Z., Pinjing H., Liming S.,Taifeng J., Jingyao H. Biodrying of municipal solid waste with high water content by combined hydrolytic-aerobic technology. <em>Journal of Environmental Sciences</em> 2008:20(12):1534–1540. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/S1001-0742(08)62562-0" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/S1001-0742(08)62562-0</a>">https://doi.org/10.1016/S1001-0742(08)62562-0</ext-link><dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1016/S1001-0742(08)62562-0" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/S1001-0742(08)62562-0</a></dgdoi:pub-id>
  33. [33] Bilgin M., Tulun Ş. Biodrying for municipal solid waste: Volume and weight reduction. <em>Environmental Technology</em> 2015:36(13):1691–1697. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1080/09593330.2015.1006262" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1080/09593330.2015.1006262</a>">https://doi.org/10.1080/09593330.2015.1006262</ext-link><dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1080/09593330.2015.1006262" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1080/09593330.2015.1006262</a></dgdoi:pub-id><dgpm:pub-id xmlns:dgpm="http://degruyter.com/resources/fetched-pubmed-id" pub-id-type="pmid">25571768</dgpm:pub-id>
  34. [34] Fritsche W., Hofrichter M. Aerobic Degradation by Microorganisms. <em>Biotechnology: Second, Completely Revised Edition</em> 2001. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1002/9783527620999.ch6m" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1002/9783527620999.ch6m</a>">https://doi.org/10.1002/9783527620999.ch6m</ext-link>.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1002/9783527620999.ch6m" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1002/9783527620999.ch6m</a></dgdoi:pub-id>
  35. [35] Yang B., Hao Z., Jahng D. Advances in biodrying technologies for converting organic wastes into solid fuel. <em>Drying Technology</em> 2017:35(16):1950–1969. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1080/07373937.2017.1322100" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1080/07373937.2017.1322100</a>">https://doi.org/10.1080/07373937.2017.1322100</ext-link><dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1080/07373937.2017.1322100" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1080/07373937.2017.1322100</a></dgdoi:pub-id>
  36. [36] Wolna-Maruwka A. Impact of the inoculation with BAF preparation on microbiological and biochemical parameters of sewage sludge composting. Fresenius Environmental Bulletin 2012:21(2A): 413–425.
  37. [37] Said-Pullicino D., Erriquens G. F., Gigliotti G. Changes in the chemical characteristics of water-extractable organic matter during composting and their influence on compost stability and maturity. <em>Bioresource Technology</em> 2007:98(9):1822–1831. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.biortech.2006.06.018" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.biortech.2006.06.018</a>">https://doi.org/10.1016/j.biortech.2006.06.018</ext-link><dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1016/j.biortech.2006.06.018" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.biortech.2006.06.018</a></dgdoi:pub-id><dgpm:pub-id xmlns:dgpm="http://degruyter.com/resources/fetched-pubmed-id" pub-id-type="pmid">16935491</dgpm:pub-id>
  38. [38] Setyorini D., Saraswati R., Anwar E. K. Pupuk organik dan pupuk hayati. Balai Besar Sumberdaya Lahan Pertanian Badan Litbang Pertanian, Bogor 2006.
  39. [39] Cai L., Chen T., Gao D., Yu J. Bacterial communities and their association with the bio-drying of sewage sludge. <em>Water Research</em> 2016:90:44–51. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.watres.2015.12.026" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.watres.2015.12.026</a>">https://doi.org/10.1016/j.watres.2015.12.026</ext-link><dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1016/j.watres.2015.12.026" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.watres.2015.12.026</a></dgdoi:pub-id><dgpm:pub-id xmlns:dgpm="http://degruyter.com/resources/fetched-pubmed-id" pub-id-type="pmid">26724438</dgpm:pub-id>
  40. [40] Rada E. C., Ragazzi M., Badea A. MSW Bio-drying: Design criteria from A 10 years research. <em>UPB Scientific Bulletin, Series D: Mechanical Engineering</em> 2012:74(3):209–216.
  41. [41] Yuan J., Li Y., Zhang H., Zhang D., Chadwick D., Li G., <em>et al.</em> Effects of adding bulking agents on the biodrying of kitchen waste and the odor emissions produced. <em>Journal of Environmental Sciences</em> 2018:67:344–355. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.jes.2017.08.014" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.jes.2017.08.014</a>">https://doi.org/10.1016/j.jes.2017.08.014</ext-link><dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1016/j.jes.2017.08.014" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.jes.2017.08.014</a></dgdoi:pub-id>
  42. [42] Tom P. A., Haridas A., Pawels R. Biodrying Process Efficiency: -Significance of Reactor Matrix Height. <em>Procedia Technology</em> 2016:25:130–137. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.protcy.2016.08.240" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.protcy.2016.08.240</a>">https://doi.org/10.1016/j.protcy.2016.08.240</ext-link><dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1016/j.protcy.2016.08.240" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.protcy.2016.08.240</a></dgdoi:pub-id>
  43. [43] Béguin P., Aubert J. The biological degradation of cellulose. <em>FEMS Microbiology Reviews</em> 1994:13(1):25–58. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1111/j.1574-6976.1994.tb00033.x" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1111/j.1574-6976.1994.tb00033.x</a>">https://doi.org/10.1111/j.1574-6976.1994.tb00033.x</ext-link><dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1111/j.1574-6976.1994.tb00033.x" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1111/j.1574-6976.1994.tb00033.x</a></dgdoi:pub-id>
  44. [44] Malherbe S., Cloete T. E. Lignocellulose biodegradation: Fundamentals and applications. <em>Reviews in Environmental Science and Biotechnology</em> 2002:1:105–114. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1023/A:1020858910646" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1023/A:1020858910646</a>">https://doi.org/10.1023/A:1020858910646</ext-link><dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1023/A:1020858910646" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1023/A:1020858910646</a></dgdoi:pub-id>
  45. [45] Yang H., Yan R., Chen H., Lee H. D., Zheng C. Characteristics of hemicellulose, cellulose and lignin pyrolysis. <em>Fuel</em> 2007:86(12–13):1781–1788. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.fuel.2006.12.013" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.fuel.2006.12.013</a>">https://doi.org/10.1016/j.fuel.2006.12.013</ext-link><dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1016/j.fuel.2006.12.013" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.fuel.2006.12.013</a></dgdoi:pub-id>
  46. [46] Zhang H., Krafft T., Gao D., Zheng G., Cai L. Lignocellulose biodegradation in the biodrying process of sewage sludge and sawdust. <em>Drying Technology</em> 2018:36(3):316–324. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1080/07373937.2017.1326502" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1080/07373937.2017.1326502</a>">https://doi.org/10.1080/07373937.2017.1326502</ext-link><dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1080/07373937.2017.1326502" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1080/07373937.2017.1326502</a></dgdoi:pub-id>
  47. [47] Sokhansanj S. The Effect of Moisture on Heating Values. Biomass Energy Data Book 2011:(C):1–5.
  48. [48] Tabarés J. L. M., Ortiz L., Granada E., Viar F. P. Feasibility study of energy use for densificated lignocellulosic material (briquettes). <em>Fuel</em> 2000:79(10):1229–1237. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/S0016-2361(99)00256-2" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/S0016-2361(99)00256-2</a>">https://doi.org/10.1016/S0016-2361(99)00256-2</ext-link><dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1016/S0016-2361(99)00256-2" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/S0016-2361(99)00256-2</a></dgdoi:pub-id>
  49. [49] Qu T., Guo W,. Shen L., Xiao J., Zhao K. Experimental study of biomass pyrolysis based on three major components: Hemicellulose, cellulose, and lignin. <em>Industrial and Engineering Chemistry Research</em> 2011:50(18):10424–10433. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1021/ie1025453" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1021/ie1025453</a>">https://doi.org/10.1021/ie1025453</ext-link><dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1021/ie1025453" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1021/ie1025453</a></dgdoi:pub-id>
  50. [50] Nasrullah M., Vainikka P., Hannula J., Hurme M., Kärki J. Mass, energy and material balances of SRF production process. Part 1: SRF produced from commercial and industrial waste. <em>Waste Management</em> 2014:34(8):1398–1407. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.wasman.2014.03.011" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.wasman.2014.03.011</a>">https://doi.org/10.1016/j.wasman.2014.03.011</ext-link><dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1016/j.wasman.2014.03.011" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.wasman.2014.03.011</a></dgdoi:pub-id><dgpm:pub-id xmlns:dgpm="http://degruyter.com/resources/fetched-pubmed-id" pub-id-type="pmid">24735992</dgpm:pub-id>
  51. [51] European Committee for Standardization. <em>Solid Recovered Fuels</em>. English: European Committee for Standardization; 2018
  52. [52] Widarti B. N., Wardhini W. K., Sarwono E. <em>J. Integr. Proses</em> 2015:5(2):75–80.
DOI: https://doi.org/10.2478/rtuect-2021-0012 | Journal eISSN: 2255-8837 | Journal ISSN: 1691-5208
Language: English
Page range: 176 - 187
Published on: May 20, 2021
Published by: Riga Technical University
In partnership with: Paradigm Publishing Services
Publication frequency: 2 times per year

© 2021 Badrus Zaman, Budi Prasetyo Samadikun, Nurandani Hardyanti, Purwono Purwono, published by Riga Technical University
This work is licensed under the Creative Commons Attribution 4.0 License.