Have a personal or library account? Click to login
Production of Biodiesel from Moringa Oleifera and Jatropha Curcas Seed Oils over a Modified ZnO/Fly Ash Catalyst Cover

Production of Biodiesel from Moringa Oleifera and Jatropha Curcas Seed Oils over a Modified ZnO/Fly Ash Catalyst

Open Access
|Apr 2021

References

  1. [1] Gulum M., Bilgin A. Measurement and Prediction of Density and Viscosity of Different Diesel-Vegetable Oil Binary Blends. <em>Environmental and Climate Technologies</em> 2019:23(1):214–218. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.2478/rtuect-2019-0014" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.2478/rtuect-2019-0014</a>">https://doi.org/10.2478/rtuect-2019-0014</ext-link><dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.2478/rtuect-2019-0014" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.2478/rtuect-2019-0014</a></dgdoi:pub-id>
  2. [2] Botswana Energy Sector. Energy Policy Brief: Reflecting on the Challenges of Attaining a Green Economy for Botswana. Gaborone, 2012.
  3. [3] Dufey A. Biofuels production, trade and sustainable development: emerging issues. London: International Institute for Environment and Development, 2006:2.
  4. [4] Zihare L., Blumberga D. Bioeconomy Investments: Market Considerations. <em>Environmental and Climate Technologies</em> 2020:24(2):79–91. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.2478/rtuect-2020-0056" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.2478/rtuect-2020-0056</a>">https://doi.org/10.2478/rtuect-2020-0056</ext-link><dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.2478/rtuect-2020-0056" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.2478/rtuect-2020-0056</a></dgdoi:pub-id>
  5. [5] Singh S. P., Singh D. Biodiesel production through the use of different sources and characterization of oils and their esters as the substitute of diesel: A review. <em>Renewable and Sustainable Energy Reviews</em> 2010:14(1):200–216. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.rser.2009.07.017" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.rser.2009.07.017</a>">https://doi.org/10.1016/j.rser.2009.07.017</ext-link><dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1016/j.rser.2009.07.017" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.rser.2009.07.017</a></dgdoi:pub-id>
  6. [6] Yusuff A. S., Bello K. A. Synthesis of fatty acid methyl ester via transesterification of waste frying oil by a zinc-modified pumice catalyst: Taguchi approach to parametric optimization. <em>React. Kinet. Mech. Catal</em>. 2019:128(2):739–761. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1007/s11144-019-01680-z" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/s11144-019-01680-z</a>">https://doi.org/10.1007/s11144-019-01680-z</ext-link><dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1007/s11144-019-01680-z" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/s11144-019-01680-z</a></dgdoi:pub-id>
  7. [7] Musa I. A. The effects of alcohol to oil molar ratios and the type of alcohol on biodiesel production using transesterification process. <em>Egyptian Journal of Petroleum</em> 2016:25(1):21–31. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.ejpe.2015.06.007" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.ejpe.2015.06.007</a>">https://doi.org/10.1016/j.ejpe.2015.06.007</ext-link><dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1016/j.ejpe.2015.06.007" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.ejpe.2015.06.007</a></dgdoi:pub-id>
  8. [8] Romero R., Luz Martinez S., Natividad R. Biodiesel Production by Using Heterogeneous Catalysts. Alternative Fuel. London: InTech, 2011. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.5772/23908" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.5772/23908</a>">https://doi.org/10.5772/23908</ext-link><dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.5772/23908" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.5772/23908</a></dgdoi:pub-id>
  9. [9] Lam M. K., Lee K. T. Production of biodiesel using palm oil. Biofuels. Elsevier Inc., 2011:353–374.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1016/B978-0-12-385099-7.00016-4" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/B978-0-12-385099-7.00016-4</a></dgdoi:pub-id>
  10. [10] AlSharifi M., Znad H. Development of a lithium based chicken bone (Li-Cb) composite as an efficient catalyst for biodiesel production. Renew. <em>Energy</em> 2019:136:856–864. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.renene.2019.01.052" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.renene.2019.01.052</a>">https://doi.org/10.1016/j.renene.2019.01.052</ext-link><dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1016/j.renene.2019.01.052" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.renene.2019.01.052</a></dgdoi:pub-id>
  11. [11] Kamel D. A., <em>et al.</em> Smart utilization of jatropha (<em>Jatropha curcas Linnaeus</em>) seeds for biodiesel production: Optimization and mechanism. <em>Ind. Crops Prod</em>. 2017:111:407–413. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.indcrop.2017.10.029" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.indcrop.2017.10.029</a>">https://doi.org/10.1016/j.indcrop.2017.10.029</ext-link><dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1016/j.indcrop.2017.10.029" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.indcrop.2017.10.029</a></dgdoi:pub-id>
  12. [12] Azam M. M., Waris A., Nahar N. M. Prospects and potential of fatty acid methyl esters of some non-traditional seed oils for use as biodiesel in India. <em>Biomass and Bioenergy</em> 2005:29(4):293–302. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.biombioe.2005.05.001" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.biombioe.2005.05.001</a>">https://doi.org/10.1016/j.biombioe.2005.05.001</ext-link><dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1016/j.biombioe.2005.05.001" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.biombioe.2005.05.001</a></dgdoi:pub-id>
  13. [13] Nautiyal P., Subramanian K. A., Dastidar M. G. Production and characterization of biodiesel from algae. <em>Fuel Process. Technol</em>. 2014:120:79–88. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.fuproc.2013.12.003" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.fuproc.2013.12.003</a>">https://doi.org/10.1016/j.fuproc.2013.12.003</ext-link><dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1016/j.fuproc.2013.12.003" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.fuproc.2013.12.003</a></dgdoi:pub-id>
  14. [14] Cañadas-López A., <em>et al</em>. Productivity and oil content in relation to jatropha fruit ripening under tropical dry-forest conditions. <em>Forests</em> 2018:9(10):611. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.3390/f9100611" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/f9100611</a>">https://doi.org/10.3390/f9100611</ext-link><dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.3390/f9100611" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.3390/f9100611</a></dgdoi:pub-id>
  15. [15] Banga S., Varshney P. Effect of impurities on performance of biodiesel: A review. <em>J. Sci. Ind. Res. (India).</em> 2010:69(8):575–579.
  16. [16] Kusdiana D., Saka S. Effects of water on biodiesel fuel production by supercritical methanol treatment. <em>Bioresour. Technol</em>. 2004:91(3):289–295. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/S0960-8524(03)00201-3" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/S0960-8524(03)00201-3</a>">https://doi.org/10.1016/S0960-8524(03)00201-3</ext-link><dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1016/S0960-8524(03)00201-3" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/S0960-8524(03)00201-3</a></dgdoi:pub-id>
  17. [17] Udoh J. E., <em>et al.</em> Effect of Moisture Content on the Mechanical and Oil Properties of Soursop Seeds. <em>Chemical Engineering Transactions</em> 2017:58:361–366. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.3303/CET1758061" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3303/CET1758061</a>">https://doi.org/10.3303/CET1758061</ext-link>
DOI: https://doi.org/10.2478/rtuect-2021-0010 | Journal eISSN: 2255-8837 | Journal ISSN: 1691-5208
Language: English
Page range: 151 - 160
Published on: Apr 12, 2021
Published by: Riga Technical University
In partnership with: Paradigm Publishing Services
Publication frequency: 2 times per year

© 2021 Katlego Bombo, Tumeletso Lekgoba, Oluwatosin Azeez, Edison Muzenda, published by Riga Technical University
This work is licensed under the Creative Commons Attribution 4.0 License.