Have a personal or library account? Click to login
Industrial Energy Efficiency Towards Green Deal Transition. Case of Latvia. Cover

Industrial Energy Efficiency Towards Green Deal Transition. Case of Latvia.

Open Access
|Jan 2021

References

  1. [1] Council Directive 93/76/EEC of 13 September 1993 to limit carbon dioxide emissions by improving energy efficiency (SAVE). Official Journal of European Union 1993: L 237.
  2. [2] Directive 2006/32/EC of the European Parliament and the Council of 5 April 2006 on energy end-use efficiency and energy services and repealing Council Directive 93/76/EEC. Official Journal of European Union 2006: L 114.
  3. [3] Directive 2012/27/EU of the European Parliament and of the Council of 25 October 2012 on energy efficiency, amending Directives 2009/125/EC and 2010/30/EU and repealing Directives 2004/8/EC and 2006/32/EC. Official Journal of European Union 2012: L 315.
  4. [4] Directive 2012/27/EU of the European Parliament and of the Council of 11 December 2018–2020 on energy efficiency. Official Journal of European Union 2018: L 328.
  5. [5] European Commission. The European Green Deal. 2019. 640 final.
  6. [6] European Union, Directorate-General for Energy (2019). Clean energy for all Europeans. [Online]. [Accessed 29.01.2020]. Available: https://op.europa.eu/en/publication-detail/-/publication/b4e46873-7528-11e9-9f05-01aa75ed71a1
  7. [7] European Union, Energy Commissioner Aria Canete (2015) Speech by Commissioner Arias Cañete at the Lisbon Council. Towards an Effective Energy Union. [Online]. [Accessed 30.01.2020]. Available: https://ec.europa.eu/commission/presscorner/detail/en/SPEECH_15_4439
  8. [8] Communication from the Commission — Guidelines on State aid for environmental protection and energy 2014–2020, Official Journal of the European Union 2014: L 57.
  9. [9] Locmelis K., Blumberga A., Bariss U., Blumberga D. Energy policy for energy intensive manufacturing companies and its impact on energy efficiency improvements. System dynamics approach. Energy Procedia 2017:128:10–16. https://doi.org/10.1016/j.egypro.2017.09.00510.1016/j.egypro.2017.09.005
  10. [10] Directive 2003/87/EC of the European Parliament and of the Council of 13 October 2003 establishing a system for greenhouse gas emission allowance trading within the Union and amending Council Directive 96/61/EC. OJ L 275 25.10.2003.
  11. [11] Cabinet of Ministers of Latvia. First Energy Efficiency Action Plan of the Republic of Latvia 2008–2010. Latvijas Vēstnesis, Issue 79, 22.05.2008.
  12. [12] Cabinet of Ministers of Latvia. Second Energy Efficiency Action Plan of the Republic of Latvia 2011–2013. Latvijas Vēstnesis, Issue 148, 20.09.2011.
  13. [13] National Development Plan of Latvia for 2014–2020. Latvijas Vēstnesis, Issue 6, 09.01.2013.
  14. [14] Ministry of Economics of Latvia. On the progress towards the indicative national energy efficiency targets in 2014 – 2016 according to Directive 2012/27/EU of the European Parliament and of the Council of 25 October 2012 on energy efficiency, amending Directives 2009/125/EC and 2010/30/EU and repealing Directives 2004/8/EC and 2006/32/EC, 2014. [Online]. [Accessed 30.01.2020]. Available: https://ec.europa.eu/energy/sites/ener/files/documents/neeap_2014.zip
  15. [15] Energy Efficiency Law. Latvijas Vēstnesis, Issue 52, 2016. [Online]. [Accessed 29.01.2020]. Available: https://likumi.lv/ta/en/en/id/280932-energy-efficiency-law [29.01.2020]
  16. [16] Locmelis K., Blumberga D., Bariss U. Energy efficiency in large industrial plants. Legislative aspects. Energy Procedia 2018:147:202–206. https://doi.org/10.1016/j.egypro.2018.07.05810.1016/j.egypro.2018.07.058
  17. [17] Cabinet of Ministers of Latvia. Alternative measure plan of Latvian energy efficiency policy on achieving final consumption energy efficiency targets for the period 2014–2020 from 24 May 2017. Latvijas Vēstnesis, Issue 104, 29.05.2017. [Online]. [Accessed 31.01.2020]. Available: https://www.vestnesis.lv/op/2017/104.8
  18. [18] Cabinet of Ministers of Latvia. National energy and climate plan 2021–2030. [Online]. [Accessed 31.01.2020]. Available: https://em.gov.lv/lv/nozares_politika/nacionalais_energetikas_un_klimata_plans/
  19. [19] Knoop K., Lechtenböhmer S. The potential for energy efficiency in the EU Member States – A comparison of studies. Renewable and Sustainable Energy Reviews 2017:68(P2):1097–1105. https://doi.org/10.1016/j.rser.2016.05.09010.1016/j.rser.2016.05.090
  20. [20] Jaffe A., Stavins R. The energy-efficient gap: What does it mean? Energy Policy 1994:22(10):804–810. https://doi.org/10.1016/0301-4215(94)90138-410.1016/0301-4215(94)90138-4
  21. [21] Mosenthal P., Loiter J. Guide for Conducting Energy Efficiency Potential Studies. National Action Plan for Energy Efficiency, 2007.
  22. [22] Boyd G., McDonald J. F., Ross M., Hansont D. A. Separating the Changing Composition of U.S. Manufacturing Production from Energy Efficiency Improvements: A Divisia Index Approach. The Energy Journal, International Association for Energy Economics 1987:2:77–96. https://doi.org/10.5547/ISSN0195-6574-EJ-Vol8-No2-610.5547/ISSN0195-6574-EJ-Vol8-No2-6
  23. [23] Jenne C. A., Cattell R. K. Structural change and energy efficiency in industry. Energy Economics 1983:5(2):114–123. https://doi.org/10.1016/0140-9883(83)90018-X10.1016/0140-9883(83)90018-X
  24. [24] Howarth R. B., Schipper L., Duerr P. A., Strøm S. Manufacturing energy use in eight OECD countries: Decomposing the impacts of changes in output, industry structure and energy intensity. Energy Economics 1991:13(2):135–142. https://doi.org/10.1016/0140-9883(91)90046-310.1016/0140-9883(91)90046-3
  25. [25] Andersson E., Karlsson M., Thollander P., Paramonova S. Energy end-use and efficiency potentials among Swedish industrial small and medium-sized enterprises – A dataset analysis from the national energy audit program. Renewable and Sustainable Energy Reviews 2018:93:165–177. https://doi.org/10.1016/j.rser.2018.05.03710.1016/j.rser.2018.05.037
  26. [26] Zuberi M. J. S., Patel M. K. Bottom-up analysis of energy efficiency improvement and CO2 emission reduction potentials in the Swiss cement industry. Journal of Cleaner Production 2017:142(P4):4294–4309. https://doi.org/10.1016/j.jclepro.2016.11.17810.1016/j.jclepro.2016.11.178
  27. [27] Hasanbeigi A., Harrell G., Schreck B., Monga P. Moving beyond equipment and to systems optimization: Techno-economic analysis of energy efficiency potentials in industrial steam systems in China. Journal of Cleaner Production 2016:120:53–63. https://doi.org/10.1016/j.jclepro.2016.02.02310.1016/j.jclepro.2016.02.023
  28. [28] European Environmental Agency. Indicators. Intensity of final energy consumption in Europe. 2019. [Online]. [Accessed 31.03.2020]. Available: https://www.eea.europa.eu/data-and-maps/indicators/final-energy-consumption-intensity-5
  29. [29] Statistical office of the European Union. Annual detailed enterprise statistics for industry. Value added at factor cost (V12150). 2019. [Online]. [Accessed 31.01.2020]. Available: https://ec.europa.eu/eurostat/data/database
  30. [30] Statistical office of the European Union (2020). Simplified energy balances. Final consumption – industry sector – energy use (FC_IND_E). [Online]. [Accessed 31.01.2020]. Available: https://ec.europa.eu/eurostat/data/database
  31. [31] The Intergovernmental Panel on Climate Change. IPCC Guidelines for National Greenhouse Gas Inventories. 2006. [Online]. [Accessed 31.01.2020]. Available: https://www.ipcc-nggip.iges.or.jp/public/2006gl/vol2.html
  32. [32] European Environmental Agency. CO2 emission intensity. [Online]. [Accessed 31.01.2020]. Available: https://www.eea.europa.eu/data-and-maps/daviz/co2-emission-intensity-5
  33. [33] Locmelis K., Bariss U., Blumberga D. Energy Efficiency Obligations and Subsidies to Energy Intensive Industries in Latvia. Environmental and Climate Technologies 2019:23(2):90–101. https://doi.org/10.2478/rtuect-2019-005710.2478/rtuect-2019-0057
  34. [34] Locmelis K., Blumberga D. Energy taxation exemptions for energy intensive industries and its impact on energy efficiency in Latvia. 2019 IEEE 60th International Scientific Conference on Power and Electrical Engineering of Riga Technical University (RTUCON). Riga, Latvia, 2019. https://doi.org/10.1109/RTUCON48111.2019.898231310.1109/RTUCON48111.2019.8982313
DOI: https://doi.org/10.2478/rtuect-2021-0004 | Journal eISSN: 2255-8837 | Journal ISSN: 1691-5208
Language: English
Page range: 42 - 57
Published on: Jan 29, 2021
Published by: Riga Technical University
In partnership with: Paradigm Publishing Services
Publication frequency: 2 times per year

© 2021 Kristaps Locmelis, Andra Blumberga, Uldis Bariss, Dagnija Blumberga, Lauma Balode, published by Riga Technical University
This work is licensed under the Creative Commons Attribution 4.0 License.