Have a personal or library account? Click to login
Spatial Economic Modeling of the Waste-driven Agricultural Biogas in Lubelskie Region, Poland Cover

Spatial Economic Modeling of the Waste-driven Agricultural Biogas in Lubelskie Region, Poland

Open Access
|Dec 2020

References

  1. [1] IEA Bioenergy Task 37. Country Report Summaries. IEA Bioenergy, 2017.
  2. [2] Polish Ministry of Energy. Extract from the draft of Energy of Poland until 2040 (EPP2040). Warsaw: Ministry of Energy, 2018.
  3. [3] Krajowy Ośrodek Wsparcia Rolnictwa (KOWR). Rejestr wytwórców biogazu rolniczego z dnia 02.10.2019r (National Agricultural Support Center (KOWR). Register of agricultural biogas producers of 02/10/2019). 2019. (in Polish)
  4. [4] Thrän D., et al. Governance of sustainability in the German biogas sector - Adaptive management of the Renewable Energy Act between agriculture and the energy sector. Energy, Sustainability and Society 2020:10:1–18. https://doi.org/10.1186/s13705-019-0227-y10.1186/s13705-019-0227-y
  5. [5] Igliński B., et al. 15 Years of the Polish agricultural biogas plants: their history, current status, biogas potential and perspectives. Clean Technologies and Environmental Policy 2020:22:281–307. https://doi.org/10.1007/s10098-020-01812-310.1007/s10098-020-01812-3
  6. [6] Ustawa z dnia 7 czerwca 2018 r. o zmianie ustawy o odnawialnych źródłach energii oraz niektórych innych ustaw (Act of June 7, 2018 amending the act on renewable energy sources and certain other acts.). Rzeczypospolitej Polskiej Dziennik Ustaw 2018. (in Polish)
  7. [7] Igliński B., et al. Agricultural biogas plants in Poland: Investment process, economical and environmental aspects, biogas potential. Renewable and Sustainable Energy Reviews 2012:16(7):4890–4900. https://doi.org/10.1016/j.rser.2012.04.03710.1016/j.rser.2012.04.037
  8. [8] Piwowar A., Dzikuć M. Development of Renewable Energy Sources in the Context of Threats Resulting from Low-Altitude Emissions in Rural Areas in Poland: A Review. Energies 2019:12(18):35–58. https://doi.org/10.3390/en1218355810.3390/en12183558
  9. [9] Zubrzycka M., et al. Prospects for the development of the agricultural biogas sector in Poland. Journal of Agribusiness and Rural Development 2017:43(1):227–237. https://doi.org/10.17306/J.JARD.2017.0027510.17306/J.JARD.2017.00275
  10. [10] Chodkowska-Miszczuk J. Institutional Support for Biogas Enterprises - The Local Perspective. Quaestiones Geographicae 2019:38(2):137–147. https://doi.org/10.2478/quageo-2019-001810.2478/quageo-2019-0018
  11. [11] Chodkowska-Miszczuk J., Kulla M., Novotný L. The role of energy policy in agricultural biogas energy production in Visegrad countries. Bulletin of Geography 2017:35(35):19–34. https://doi.org/10.1515/bog-2017-000210.1515/bog-2017-0002
  12. [12] Sulewsk P., Majewski E., Wąs A. Supporting Sustainable Agriculture: the Potential to Reduce GHG Emissions – the Case of Agricultural Biogas Production in Poland. Rocznik Ochrona Środowiska 2018:20:662–680.
  13. [13] Muizniece I., et al. Circular Economy and Bioeconomy Interaction Development as Future for Rural Regions. Case Study of Aizkraukle Region in Latvia. Environmental and Climate Technologies 2019:23(2):129–146. https://doi.org/10.2478/rtuect-2019-008410.2478/rtuect-2019-0084
  14. [14] Sliz-Szkliniarz B., Vogt J. A GIS-based approach for evaluating the potential of biogas production from livestock manure and crops at a regional scale: A case study for the Kujawsko-Pomorskie Voivodeship. Renewable and Sustainable Energy Reviews 2012:16(1):752–763. https://doi.org/10.1016/j.rser.2011.09.00110.1016/j.rser.2011.09.001
  15. [15] Statistic Poland. The NUTS classification in Poland. 2020. [Online]. [Accessed 15.02.2020]. Available: https://www.arimr.gov.pl/o-arimr/information-about-the-agency.html
  16. [16] Rzeznik W., Mielcarek P. Agricultural biogas plants in Poland. Engineering for Rural Development 2018:17:1760–1765. https://doi.org/10.22616/ERDev2018.17.N31010.22616/ERDev2018.17.N310
  17. [17] Oniszk-Popławska A., Matyka M., Ryńska E. D. Evaluation of a long-term potential for the development of agricultural biogas plants: A case study for the Lubelskie Province, Poland. Renewable and Sustainable Energy Reviews 2014:36:329–349. https://doi.org/10.1016/j.rser.2014.04.01010.1016/j.rser.2014.04.010
  18. [18] Jędrejek A., Jarosz Z. Potential of Agricultural Biomass for Energy Production Purposes in Lubelskie Province. Annals Of The Polish Association Of Agricultural And Agribusiness Economists 2017:XIX(3):98–103. https://doi.org/10.5604/01.3001.0010.3227 (in Polish)10.5604/01.3001.0010.3227
  19. [19] Shu K., et al. Simulation of sorghum introduction and its impacts on land use change – A case study on Lubelski region of Eastern Poland. GCB Bioenergy 2020:12:252–274. https://doi.org/10.1111/gcbb.1266910.1111/gcbb.12669718829932362941
  20. [20] Delzeit R., Britz W., Holm-Müller K. Modelling regional input markets with numerous processing plants: The case of green maize for biogas production in Germany. Environmental Modelling and Software 2012:32:74–84. https://doi.org/10.1016/j.envsoft.2011.08.01410.1016/j.envsoft.2011.08.014
  21. [21] Bartoli A., et al. The impact of different energy policy options on feedstock price and land demand for maize silage: The case of biogas in Lombardy. Energy Policy 2016:96:351–363. https://doi.org/10.1016/j.enpol.2016.06.01810.1016/j.enpol.2016.06.018
  22. [22] Delzeit R., Britz W., Holm-Mueller K. Modelling Regional Maize Market and Transport Distances for Biogas Production in Germany. Proceedings “Schriften Der Gesellschaft Für Wirtschafts- Und Sozialwissenschaften Des Landbaues eV” German Association of Agricultural Economists (GEWISOLA) 2010:45.
  23. [23] Conti F., Saidi A., Goldbrunner M. CFD Modelling of Biomass Mixing in Anaerobic Digesters of Biogas Plants. Environmental and Climate Technologies 2019:23(3):57–69. https://doi.org/10.2478/rtuect-2019-007910.2478/rtuect-2019-0079
  24. [24] Kluts I., et al. Sustainability constraints in determining European bioenergy potential: A review of existing studies and steps forward. Renewable and Sustainable Energy Reviews 2017:69:719–734. https://doi.org/10.1016/j.rser.2016.11.03610.1016/j.rser.2016.11.036
  25. [25] Pastare L., Romagnoli F. Life Cycle Cost Analysis of Biogas Production from Cerathophyllum demersum, Fucus vesiculosus and Ulva intestinalis in Latvian Conditions. Environmental and Climate Technologies 2019:23(2):258–271. https://doi.org/10.2478/rtuect-2019-006710.2478/rtuect-2019-0067
  26. [26] Pudełko R., Kozak M., Jędrejek A., Gałczyńska M., Pomianek B. Regionalisation of unutilised agricultural area in Poland. Polish Journal of Soil Science 2018:51:119–132. https://doi.org/10.17951/pjss/2018.51.1.119
  27. [27] Agency for Restructuring and Modernization of Agriculture - ARiMR 2020. [Online]. [Accessed 12.02.2020]. Available: https://www.arimr.gov.pl/o-arimr/information-about-the-agency.html
  28. [28] Sefeedpari P., et al. To what extent is manure produced, distributed and potentially available for bioenergy? A step toward stimulating circular bio-economy in Poland. Agriculture (forthcoming).
  29. [29] Yoshida H., Gable J. J., Park J. K. Evaluation of organic waste diversion alternatives for greenhouse gas reduction. Resources, Conservation and Recycling 2012:60:1–9. https://doi.org/10.1016/j.resconrec.2011.11.01110.1016/j.resconrec.2011.11.011
  30. [30] Karpus K. The new Polish Act on Waste of 2012. Polish Yearbook of Environmental Law 2013:0:31. https://doi.org/10.12775/pyel.2013.00310.12775/PYEL.2013.003
  31. [31] Dz. U. 2020 poz. 10. Rozporządzenie Ministra Klimatu w sprawie katalogu odpadów z dnia 2 stycznia. (Regulation of the Minister of Climate on the waste catalog of 2 January). 2020r. 2020:1–48. (in Poland).
  32. [32] Bartoli A., et al. Coupling economic and GHG emission accounting models to evaluate the sustainability of biogas policies. Renewable and Sustainable Energy Reviews 2019:106:133–148. https://doi.org/10.1016/j.rser.2019.02.03110.1016/j.rser.2019.02.031
  33. [33] Prażak R. Prospects for Sorghum cultivation in Poland. Acta Agrobotanica 2016:69:1661. https://doi.org/10.5586/aa.166110.5586/aa.1661
  34. [34] Statistic Poland. Territorial units layout. 2020. [Online]. [Accessed 12.02.2020]. Available: https://bdl.stat.gov.pl/BDL/metadane/teryt/lista
  35. [35] Demartini E., et al. The effect of biogas production on farmland rental prices: Empirical evidences from Northern Italy. Energies 2016:9(11):0965. https://doi.org/10.3390/en911096510.3390/en9110965
  36. [36] Oil and Gas Institute. The agricultural biogas plants in Poland. Krakow: Oil and Gas institute-national research Institute Poland, 2014.
  37. [37] Sołtysiński Kawecki & Szlęzak. Polish incentive schemes for renewable energy generation, 2019.
  38. [38] Sourie J. C., Rozakis S. Bio-fuel production system in France: An economic analysis. Biomass and Bioenergy 2001:20(6):483–489. https://doi.org/10.1016/S0961-9534(01)00007-110.1016/S0961-9534(01)00007-1
  39. [39] Iliopoulos C., Rozakis S. Environmental cost-effectiveness of bio diesel production in Greece: Current policies and alternative scenarios. Energy Policy 2010:38(2):1067–1078. https://doi.org/10.1016/j.enpol.2009.10.05910.1016/j.enpol.2009.10.059
DOI: https://doi.org/10.2478/rtuect-2020-0123 | Journal eISSN: 2255-8837 | Journal ISSN: 1691-5208
Language: English
Page range: 545 - 559
Published on: Dec 14, 2020
Published by: Riga Technical University
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2020 Andrea Bartoli, Nosra Ben Fradj, Małgorzata Gałczyńska, Anna Jędrejek, Stelios Rozakis, Kesheng Shu, published by Riga Technical University
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.