Have a personal or library account? Click to login
Multi-Criteria Analysis of Lignocellulose Substrate Pre-Treatment Cover

Multi-Criteria Analysis of Lignocellulose Substrate Pre-Treatment

Open Access
|Dec 2020

References

  1. [1] Borawski P., Bełdycka-Borawska A., Szymanska E. J., Jankowski K. J., Dubis B., Dunn J. W. Development of renewable energy sources market and biofuels in The European Union. Journal of Cleaner Production 2019:228:467–484. https://doi.org/10.1016/j.jclepro.2019.04.24210.1016/j.jclepro.2019.04.242
  2. [2] Skogstad G. Mixed feedback dynamics and the USA renewable fuel standard: the roles of policy design and administrative agency. Policy Sciences 2020:53:349–369. https://doi.org/10.1007/s11077-020-09378-z10.1007/s11077-020-09378-z
  3. [3] Mabee W. E., McFarlane P. N., Saddler J. N. Biomass availability for lignocellulosic ethanol production. Biomass and Bioenergy 2011:35(11):4519–4529. https://doi.org/10.1016/j.biombioe.2011.06.02610.1016/j.biombioe.2011.06.026
  4. [4] Aunina Z., Bazbauers G., Valters K. Feasibility of Bioethanol Production From Lignocellulosic Biomass. Environmental and Climate Technologies 2010:4(1):11–15. https://doi.org/10.2478/v10145-010-0011-x10.2478/v10145-010-0011-x
  5. [5] Amin F. R., Khalid H., Zhang H., Rahman S., Zhang R., Liu G., Chen C. Pretreatment methods of lignocellulosic biomass for anaerobic digestion. AMB Express 2017:7(1). https://doi.org/10.1186/s13568-017-0375-410.1186/s13568-017-0375-4537116828353158
  6. [6] Schell D. J., Harwood C. Milling of Lignocellulosic Biomass Results of Pilot-Scale Testing. Applied Biochemistry and Biotechnology 1994:45/46:159–165. https://doi.org/10.1007/BF0294179510.1007/BF02941795
  7. [7] Pol van der E., Bakker R., Zeeland van A., Sanchez G. D., Punt A., Eggink G. Analysis of by-product formation and sugar monomerization in sugarcane bagasse pretreated at pilot plant scale: Differences between autohydrolysis, alkaline and acid pretreatment. Bioresource Technology 2015:181:114–123. https://doi.org/10.1016/j.biortech.2015.01.03310.1016/j.biortech.2015.01.03325643957
  8. [8] Agrawal R., Gaur R., Mathur A., Kumar R., Gupta R. P., Tuli D. K., Satlewal A. Improved saccharification of pilot-scale acid pretreated wheat straw by exploiting the synergistic behavior of lignocellulose degrading enzymes. RSC Advances 2015:5(87):71462–71471. https://doi.org/10.1039/C5RA13360B10.1039/C5RA13360B
  9. [9] Digabel F. L., Avérous L. Effects of lignin content on the properties of lignocellulose-based biocomposites. Carbohydrate Polymers 2006:66(4):537–545. https://doi.org/10.1016/j.carbpol.2006.04.02310.1016/j.carbpol.2006.04.023
  10. [10] P. Li., Cai D., Luo Z., Qin P., Chen C., Wang Y., Zhang C., Wang Z., Tan T. Effect of acid pretreatment on different parts of corn stalk for second generation ethanol production. Bioresource Technology 2016:206:86–92. https://doi.org/10.1016/j.biortech.2016.01.07710.1016/j.biortech.2016.01.07726849200
  11. [11] Taherzadeh M., Karimi K. Pretreatment of Lignocellulosic Wastes to Improve Ethanol and Biogas Production: A Review. International Journal of Molecular Science 2008:9(9):1621–1651. https://doi.org/10.3390/ijms909162110.3390/ijms9091621
  12. [12] Zheng J., Rehmann L. Extrusion Pretreatment of Lignocellulosic Biomass: A Review. International Journal of Molecular Science 2014:15. https://doi.org/10.3390/ijms15101896710.3390/ijms151018967
  13. [13] Halder P., Kundu S., Patel S., Setiawan A., Atkin R., Parthasarthy R., Paz-Ferreiro J., Surapaneni A., Shah K. Progress on the pre-treatment of lignocellulosic biomass employing ionic liquids. Renewable and Sustainable Energy Reviews 2019:105:268–292. https://doi.org/10.1016/j.rser.2019.01.05210.1016/j.rser.2019.01.052
  14. [14] Pastare L., Romagnoli F. Life Cycle Cost Analysis of Biogas Production from Cerathophyllum demersum, Fucus vesiculosus and Ulva intestinalis in Latvian Conditions. Environmental and Climate Technologies 2019:23(2):258–271. https://doi.org/10.2478/rtuect-2019-006710.2478/rtuect-2019-0067
  15. [15] Abouzied M. M., Reddy C. A. Direct Fermentation of Potato Starch to Ethanol by Cocultures of Aspergillus niger and Saccharomyces cerevisiaet. AEM 1986:52(5):1055–1059. https://doi.org/10.1128/AEM.52.5.1055-1059.198610.1128/aem.52.5.1055-1059.1986
  16. [16] Manchala K. R., Sun Y., Zhang D., Wang Z.-W. Chapter two: Anaerobic Digestion Modelling. Advances in Bioenergy 2017:2:69–141. https://doi.org/10.1016/bs.aibe.2017.01.00110.1016/bs.aibe.2017.01.001
  17. [17] Botheju D., Lie B., Bakke R. Oxygen effects in anaerobic digestion - A Review. MIC Journal 2010:31(2):55–65. https://doi.org/10.4173/mic.2010.2.210.4173/mic.2010.2.2
  18. [18] Boswell G. P., Jacobs H., Davidson F. A., Gadd G. M., Ritz K. Growth and function of fungal mycelia in heterogeneous environments. Bulletin of Mathematical Biology 2003:65(3):447–477. https://doi.org/10.1016/S0092-8240(03)00003-X10.1016/S0092-8240(03)00003-X
  19. [19] Money N. P. Insights on the mechanics of hyphal growth. Fungal Biology Reviews 2008:22(2):71–76. https://doi.org/10.1016/j.fbr.2008.05.00210.1016/j.fbr.2008.05.002
  20. [20] Shi J., Sharma-Shivappa R. R., Chinn M., Howell N. Effect of microbial pretreatment on enzymatic hydrolysis and fermentation of cotton stalks for ethanol production. Biomass and Bioenergy 2009:33(1):88–96. https://doi.org/10.1016/j.biombioe.2008.04.01610.1016/j.biombioe.2008.04.016
  21. [21] Wagner A. O., Lackner N., Mutschlechner M., Prem E. M., Markt R., Illmer P. Biological pretreatment strategies for second-generation lignocellulosic resources to enhance biogas production. Energies 2018:11(7):1797. https://doi.org/10.3390/en1107179710.3390/en11071797642008230881604
  22. [22] Rodríguez J., Ferra A., Nogueira R. F. P., Ferre I., Esposito E., Duran N. Lignin biodegradation by the ascomycete cnrysonilia sitophila. Applied Biochemistry and Biotechnology - Part A Enzym. Eng. Biotechnol 1997:62:233–242. https://doi.org/10.1007/BF0278799910.1007/BF027879999170255
  23. [23] Ayeronfe F., Kassim A., Hung P., Ishak N., Syarifah S., Aripin A. Production of ligninolytic enzymes by Coptotermes curvignathus gut bacteria. Environmental and Climate Technologies 2019:23(1):111–121. https://doi.org/10.2478/rtuect-2019-000810.2478/rtuect-2019-0008
  24. [24] Rahman N. H. A., Rahman N. A., Aziz S. A., Hassan M. A. Production of ligninolytic enzymes by newly isolated bacteria from palm oil plantation soils. BioResources 2013:8(4):6136–6150. https://doi.org/10.15376/biores.8.4.6136-615010.15376/biores.8.4.6136-6150
  25. [25] Ziemiński K., Romanowska I., Kowalska M. Enzymatic pretreatment of lignocellulosic wastes to improve biogas production. Waste Management 2012:32(6):1131–1137. https://doi.org/10.1016/j.wasman.2012.01.01610.1016/j.wasman.2012.01.01622342637
  26. [26] Asgher M., Iqbal H. M. N., Irshad M. Characterization of purified and xerogel immobilized novel lignin peroxidase produced from Trametes versicolor IBL-04 using solid state medium of corncobs. BMC Biotechnology 2012:12:46. https://doi.org/10.1186/1472-6750-12-4610.1186/1472-6750-12-46344299922862820
  27. [27] Poszytek K., Ciezkowska M., Sklodowska A., Drewniak L. Microbial Consortium with High Cellulolytic Activity (MCHCA) for enhanced biogas production. Front. Microbiol. 2016:7:1–11. https://doi.org/10.3389/fmicb.2016.0032410.3389/fmicb.2016.00324479152827014244
  28. [28] Prasad D., Ankit M. An overview of key pretreatment processes for biological conversion of lignocellulosic biomass to bioethanol. 3 Biotech 2015:5:597–609. https://doi.org/10.1007/s13205-015-0279-410.1007/s13205-015-0279-4456962028324530
  29. [29] Jedrzejczyk M., Soszka E., Czapnik M., Ruppert A. M., Grams J. Physical and chemical pretreatment of lignocellulosic biomass. Second and Third Generation of Feedstocks. The Evolution of Biofuels 2019:143–196. https://doi.org/10.1016/B978-0-12-815162-4.00006-910.1016/B978-0-12-815162-4.00006-9
  30. [30] Saif M., Rehman U., Kim I., Chisti Y., Han J. Use of ultrasound in the production of bioethanol from lignocellulosic biomass. Energy Educ. Sci. Technol. Part A Energy Sci. Res 2013:30(2):1391–1410.
  31. [31] Bussemaker M. J., Zhang D. Effect of Ultrasound on Lignocellulosic Biomass as a Pretreatment for Biore finery and Biofuel Applications. Ind. Eng. Chem. Res 2013:52(10):3563–3580. https://doi.org/10.1021/ie302278510.1021/ie3022785
  32. [32] Kratky L., Jirout T. Biomass Size Reduction Machines for Enhancing Biogas Production. Chem. Eng. Technol. 2011:34(3):391–399. https://doi.org/10.1002/ceat.20100035710.1002/ceat.201000357
  33. [33] Renders T., Schutyser W., Bosch van den S., Koelewijn S.-F., Vangeel T., Courtin C. M., Sels B. F. Influence of Acidic (H3PO4) and Alkaline (NaOH) Additives on the Catalytic Reductive Fractionation of Lignocellulose. ACS Catal. 2016:6(3):2055–2066. https://doi.org/10.1021/acscatal.5b0290610.1021/acscatal.5b02906
  34. [34] Donghai S., Junshe S., Ping L., Yanping L. Effects of Different Pretreatment Modes on the Enzymatic Digestibility of Corn Leaf and Corn Stalk. Chinese Journal of Chemical Engeniering 2006:14(6):796–801. https://doi.org/10.1016/S1004-9541(07)60014-710.1016/S1004-9541(07)60014-7
  35. [35] Capári D., Dörgő G., Dallos A. Comparison of the Effects of Thermal Pretreatment, Steam Explosion and Ultrasonic Disintegration on Digestibility of Corn Stover Comparison of the Effects of Thermal Pretreatment, Steam Explosion and Ultrasonic Disintegration on Digestibility of Corn St. Journal of Sustainable Development of Energy, Water and Environment Systems 2016:4(2):107–126. https://doi.org/10.13044/j.sdewes.2016.04.001010.13044/j.sdewes.2016.04.0010
  36. [36] Saaty T. L. Deriving the ahp 1-9 scale from first principles. Presented at 6th ISAHP, 2001.10.13033/isahp.y2001.030
  37. [37] Zakir H., Hasan M., Ara M. T. Production of Biofuel from Agricultural Plant Wastes: Corn Stover and Production of Biofuel from Agricultural Plant Wastes: Corn Stover and Sugarcane Bagasse. 2016:4–11.
  38. [38] Wan C., Li Y. Microbial pretreatment of corn stover with Ceriporiopsis subvermispora for enzymatic hydrolysis and ethanol production. Bioresource Technology 2010:101(16):6398–6403. https://doi.org/10.1016/j.biortech.2010.03.07010.1016/j.biortech.2010.03.07020381341
  39. [39] Li Y., et al. Enzymatic hydrolysis of corn stover pretreated by combined dilute alkaline treatment and homogenization. Transactions of the ASAE 2004:47(3):821–825. https://doi.org/10.13031/2013.1607810.13031/2013.16078
  40. [40] Kim S., Holtzapple M. T. Lime pretreatment and enzymatic hydrolysis of corn stover. Bioresource Technology 2005:96(18):1994–2006. https://doi.org/10.1016/j.biortech.2005.01.01410.1016/j.biortech.2005.01.01416112487
  41. [41] Li H., Xu J. Bioresource Technology Optimization of microwave-assisted calcium chloride pretreatment of corn stover. Bioresource Technology 2013:127:112–118. https://doi.org/10.1016/j.biortech.2012.09.11410.1016/j.biortech.2012.09.11423131630
  42. [42] Chen W., Ye S., Sheen H. Hydrolysis characteristics of sugarcane bagasse pretreated by dilute acid solution in a microwave irradiation environment. Applied Energy 2012:93:237–244. https://doi.org/10.1016/j.apenergy.2011.12.01410.1016/j.apenergy.2011.12.014
DOI: https://doi.org/10.2478/rtuect-2020-0118 | Journal eISSN: 2255-8837 | Journal ISSN: 1691-5208
Language: English
Page range: 483 - 492
Published on: Dec 14, 2020
Published by: Riga Technical University
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2020 Ilze Vamza, Karlis Valters, Dagnija Blumberga, published by Riga Technical University
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.