[1] Borawski P., Bełdycka-Borawska A., Szymanska E. J., Jankowski K. J., Dubis B., Dunn J. W. Development of renewable energy sources market and biofuels in The European Union. Journal of Cleaner Production 2019:228:467–484. https://doi.org/10.1016/j.jclepro.2019.04.24210.1016/j.jclepro.2019.04.242
[7] Pol van der E., Bakker R., Zeeland van A., Sanchez G. D., Punt A., Eggink G. Analysis of by-product formation and sugar monomerization in sugarcane bagasse pretreated at pilot plant scale: Differences between autohydrolysis, alkaline and acid pretreatment. Bioresource Technology 2015:181:114–123. https://doi.org/10.1016/j.biortech.2015.01.03310.1016/j.biortech.2015.01.03325643957
[8] Agrawal R., Gaur R., Mathur A., Kumar R., Gupta R. P., Tuli D. K., Satlewal A. Improved saccharification of pilot-scale acid pretreated wheat straw by exploiting the synergistic behavior of lignocellulose degrading enzymes. RSC Advances 2015:5(87):71462–71471. https://doi.org/10.1039/C5RA13360B10.1039/C5RA13360B
[11] Taherzadeh M., Karimi K. Pretreatment of Lignocellulosic Wastes to Improve Ethanol and Biogas Production: A Review. International Journal of Molecular Science 2008:9(9):1621–1651. https://doi.org/10.3390/ijms909162110.3390/ijms9091621
[13] Halder P., Kundu S., Patel S., Setiawan A., Atkin R., Parthasarthy R., Paz-Ferreiro J., Surapaneni A., Shah K. Progress on the pre-treatment of lignocellulosic biomass employing ionic liquids. Renewable and Sustainable Energy Reviews 2019:105:268–292. https://doi.org/10.1016/j.rser.2019.01.05210.1016/j.rser.2019.01.052
[14] Pastare L., Romagnoli F. Life Cycle Cost Analysis of Biogas Production from Cerathophyllum demersum, Fucus vesiculosus and Ulva intestinalis in Latvian Conditions. Environmental and Climate Technologies 2019:23(2):258–271. https://doi.org/10.2478/rtuect-2019-006710.2478/rtuect-2019-0067
[21] Wagner A. O., Lackner N., Mutschlechner M., Prem E. M., Markt R., Illmer P. Biological pretreatment strategies for second-generation lignocellulosic resources to enhance biogas production. Energies 2018:11(7):1797. https://doi.org/10.3390/en1107179710.3390/en11071797642008230881604
[22] Rodríguez J., Ferra A., Nogueira R. F. P., Ferre I., Esposito E., Duran N. Lignin biodegradation by the ascomycete cnrysonilia sitophila. Applied Biochemistry and Biotechnology - Part A Enzym. Eng. Biotechnol 1997:62:233–242. https://doi.org/10.1007/BF0278799910.1007/BF027879999170255
[23] Ayeronfe F., Kassim A., Hung P., Ishak N., Syarifah S., Aripin A. Production of ligninolytic enzymes by Coptotermes curvignathus gut bacteria. Environmental and Climate Technologies 2019:23(1):111–121. https://doi.org/10.2478/rtuect-2019-000810.2478/rtuect-2019-0008
[30] Saif M., Rehman U., Kim I., Chisti Y., Han J. Use of ultrasound in the production of bioethanol from lignocellulosic biomass. Energy Educ. Sci. Technol. Part A Energy Sci. Res 2013:30(2):1391–1410.
[31] Bussemaker M. J., Zhang D. Effect of Ultrasound on Lignocellulosic Biomass as a Pretreatment for Biore finery and Biofuel Applications. Ind. Eng. Chem. Res 2013:52(10):3563–3580. https://doi.org/10.1021/ie302278510.1021/ie3022785
[33] Renders T., Schutyser W., Bosch van den S., Koelewijn S.-F., Vangeel T., Courtin C. M., Sels B. F. Influence of Acidic (H3PO4) and Alkaline (NaOH) Additives on the Catalytic Reductive Fractionation of Lignocellulose. ACS Catal. 2016:6(3):2055–2066. https://doi.org/10.1021/acscatal.5b0290610.1021/acscatal.5b02906
[35] Capári D., Dörgő G., Dallos A. Comparison of the Effects of Thermal Pretreatment, Steam Explosion and Ultrasonic Disintegration on Digestibility of Corn Stover Comparison of the Effects of Thermal Pretreatment, Steam Explosion and Ultrasonic Disintegration on Digestibility of Corn St. Journal of Sustainable Development of Energy, Water and Environment Systems 2016:4(2):107–126. https://doi.org/10.13044/j.sdewes.2016.04.001010.13044/j.sdewes.2016.04.0010
[37] Zakir H., Hasan M., Ara M. T. Production of Biofuel from Agricultural Plant Wastes: Corn Stover and Production of Biofuel from Agricultural Plant Wastes: Corn Stover and Sugarcane Bagasse. 2016:4–11.
[39] Li Y., et al. Enzymatic hydrolysis of corn stover pretreated by combined dilute alkaline treatment and homogenization. Transactions of the ASAE 2004:47(3):821–825. https://doi.org/10.13031/2013.1607810.13031/2013.16078