[1] Connolly D., et al. Heat Roadmap Europe: Combining district heating with heat savings to decarbonise the EU energy system. Energy Policy 2014:65:475–89. http://doi.org/10.1016/j.enpol.2013.10.03510.1016/j.enpol.2013.10.035
[2] Lund H., et al. 4th Generation District Heating (4GDH). Integrating smart thermal grids into future sustainable energy systems. Energy 2014:68:1–11. http://doi.org/10.1016/j.energy.2014.02.08910.1016/j.energy.2014.02.089
[4] Lund H., et al. Renewable energy systems - A smart energy systems approach to the choice and modelling of 100 % renewable solutions. Chem. Eng. Trans. 2014:39:1–6. http://doi.org/10.3303/CET1439001
[8] Danish Energy Agency. Inspirationskatalog for store varmepumpeprojekter i fjernvarmesystemet (Inspiration catalogue for large-scale heat pump projects in district heating). Kobenhavn: DAE, 2017.
[9] David A., et al. Supplementary Materials: Heat Roadmap Europe: Large-Scale Electric Heat Pumps in District Heating Systems. Energies 2017:10(4):578. http://doi.org/10.3390/en1004057810.3390/en10040578
[12] Gaudard A., Wüest A., Schmid M. Using lakes and rivers for extraction and disposal of heat: Estimate of regional potentials. Renew Energy 2019:134:330–42. http://doi.org/10.1016/j.renene.2018.10.09510.1016/j.renene.2018.10.095
[14] Kazjonovs J., et al. Performance analysis of air-to-water heat pump in Latvian climate conditions. Environ. Clim. Technol. 2014:14(1):18–22. http://doi.org/10.1515/rtuect-2014-000910.1515/rtuect-2014-0009
[15] Lund R., Ilic D. D., Trygg L. Socioeconomic potential for introducing large-scale heat pumps in district heating in Denmark. Journal of Clean Prod. 2016:139:219–229. http://doi.org/10.1016/j.jclepro.2016.07.13510.1016/j.jclepro.2016.07.135
[16] Hedegaard K., Balyk O. Energy system investment model incorporating heat pumps with thermal storage in buildings and buffer tanks. Energy 2013:63:356–65. http://doi.org/10.1016/j.energy.2013.09.06110.1016/j.energy.2013.09.061
[18] Bazbauers G., Cimdina G. The Role of the Latvian District Heating System in the Development of Sustainable Energy Supply. Environ. Clim. Technol. 2011:7(1):27–31. http://doi.org/10.2478/v10145-011-0024-010.2478/v10145-011-0024-0
[19] Lund R., et al. Comparison of Low-temperature District Heating Concepts in a Long-Term Energy System Perspective. Int. J. Sustain. Energy Plan Manag. 2017:12:5–18. http://doi.org/10.5278/ijsepm.2017.12.2
[24] Mikkelsen S. E. Værktøj til økonomisk og miljømæssig analyse af hybridanlæg til fjernkøling og fjernvarme - Fjernkøl 2.0. Slutrapport og brugermanual. (Tool for the economical and environmental analysis of hybrid systems for district cooling and district heating - District cooling 2.0 Final report and user manual). Lyngby: COWI, 2013. (in Danish)
[32] The Danish Ministry of Climate Energy and Utilities. Energiaftale af 29. juni 2018. Energy agrement of 29 June 2018. https://kefm.dk/aftaler-og-politiske-udspil/energiaftalen
[35] Pieper H., et al. Modelling framework for integration of large-scale heat pumps in district heating using low-temperature heat sources: A case study of Tallinn, Estonia. Int. J. Sustain. Energy Plan. Manag. 2019:20:67–86. http://doi.org/10.5278/ijsepm.2019.20.6
[38] Ommen T., et al. Generalized COP estimation of heat pump processes for operation off the design point of equipment. Proc 25th IIR Int Congr Refrig 2019:648. https://doi.org/10.18462/iir.icr.2019.0648
[40] Tvärne A., et al. EU District Cooling Market and Trends. Rescue – Renewable Smart Cooling for Urban Europe 2014 https://ec.europa.eu/energy/intelligent/projects/sites/iee-projects/files/projects/documents/d2.3_eu_cooling_market_0.pdf