Have a personal or library account? Click to login
Optimal Design and Dispatch of Electrically Driven Heat Pumps and Chillers for a New Development Area Cover

Optimal Design and Dispatch of Electrically Driven Heat Pumps and Chillers for a New Development Area

Open Access
|Dec 2020

References

  1. [1] Connolly D., et al. Heat Roadmap Europe: Combining district heating with heat savings to decarbonise the EU energy system. Energy Policy 2014:65:475–89. http://doi.org/10.1016/j.enpol.2013.10.03510.1016/j.enpol.2013.10.035
  2. [2] Lund H., et al. 4th Generation District Heating (4GDH). Integrating smart thermal grids into future sustainable energy systems. Energy 2014:68:1–11. http://doi.org/10.1016/j.energy.2014.02.08910.1016/j.energy.2014.02.089
  3. [3] Lund H., et al. The role of district heating in future renewable energy systems. Energy 2010:35(3):1381–1390. http://doi.org/10.1016/j.energy.2009.11.02310.1016/j.energy.2009.11.023
  4. [4] Lund H., et al. Renewable energy systems - A smart energy systems approach to the choice and modelling of 100 % renewable solutions. Chem. Eng. Trans. 2014:39:1–6. http://doi.org/10.3303/CET1439001
  5. [5] Volkova A., et al. Methodology for the improvement of large district heating networks. Environ. Clim. Technol. 2012:10:39–45. http://doi.org/10.2478/v10145-012-0009-710.2478/v10145-012-0009-7
  6. [6] Fleiter T., et al. Heat Roadmap Europe: EU Profile of heating and cooling demand in 2015. Heat roadmap EU, 2017.
  7. [7] Čož T. D., Kitanovski A., Poredoš A. Exergoeconomic optimization of a district cooling network. Energy 2017:135:342–351. http://doi.org/10.1016/j.energy.2017.06.12610.1016/j.energy.2017.06.126
  8. [8] Danish Energy Agency. Inspirationskatalog for store varmepumpeprojekter i fjernvarmesystemet (Inspiration catalogue for large-scale heat pump projects in district heating). Kobenhavn: DAE, 2017.
  9. [9] David A., et al. Supplementary Materials: Heat Roadmap Europe: Large-Scale Electric Heat Pumps in District Heating Systems. Energies 2017:10(4):578. http://doi.org/10.3390/en1004057810.3390/en10040578
  10. [10] Berntsson T. Heat sources – Technology, economy and environment. Int. J. Refrig. 2002:25(4):428–438. http://doi.org/10.1016/S0140-7007(01)00034-210.1016/S0140-7007(01)00034-2
  11. [11] Lund R., Persson U. Mapping of potential heat sources for heat pumps for district heating in Denmark. Energy 2015:110:129–138. http://doi.org/10.1016/j.energy.2015.12.12710.1016/j.energy.2015.12.127
  12. [12] Gaudard A., Wüest A., Schmid M. Using lakes and rivers for extraction and disposal of heat: Estimate of regional potentials. Renew Energy 2019:134:330–42. http://doi.org/10.1016/j.renene.2018.10.09510.1016/j.renene.2018.10.095
  13. [13] Pieper H., et al. Comparison of COP estimation methods for large-scale heat pumps used in energy planning. Energy 2020:205:117994. http://doi.org/10.1016/j.energy.2020.11799410.1016/j.energy.2020.117994
  14. [14] Kazjonovs J., et al. Performance analysis of air-to-water heat pump in Latvian climate conditions. Environ. Clim. Technol. 2014:14(1):18–22. http://doi.org/10.1515/rtuect-2014-000910.1515/rtuect-2014-0009
  15. [15] Lund R., Ilic D. D., Trygg L. Socioeconomic potential for introducing large-scale heat pumps in district heating in Denmark. Journal of Clean Prod. 2016:139:219–229. http://doi.org/10.1016/j.jclepro.2016.07.13510.1016/j.jclepro.2016.07.135
  16. [16] Hedegaard K., Balyk O. Energy system investment model incorporating heat pumps with thermal storage in buildings and buffer tanks. Energy 2013:63:356–65. http://doi.org/10.1016/j.energy.2013.09.06110.1016/j.energy.2013.09.061
  17. [17] Rinne S., Syri S. Heat pumps versus combined heat and power production as CO2 reduction measures in Finland. Energy 2013:57:308–318. http://doi.org/10.1016/j.energy.2013.05.03310.1016/j.energy.2013.05.033
  18. [18] Bazbauers G., Cimdina G. The Role of the Latvian District Heating System in the Development of Sustainable Energy Supply. Environ. Clim. Technol. 2011:7(1):27–31. http://doi.org/10.2478/v10145-011-0024-010.2478/v10145-011-0024-0
  19. [19] Lund R., et al. Comparison of Low-temperature District Heating Concepts in a Long-Term Energy System Perspective. Int. J. Sustain. Energy Plan Manag. 2017:12:5–18. http://doi.org/10.5278/ijsepm.2017.12.2
  20. [20] Østergaard P. A., Andersen A. N. Booster heat pumps and central heat pumps in district heating. Applied Energy 2016:184:1374–1388. http://doi.org/10.1016/j.apenergy.2016.02.14410.1016/j.apenergy.2016.02.144
  21. [21] Rama M., et al. INDIGO Planning tool – IndPT. Zenodo, 2020. http://doi.org/10.5281/zenodo.1407213
  22. [22] IPU. Pack Calculation Pro. Users guide. Version 4.10. Lyngby: IPU, 2015
  23. [23] Eckstadt E. RESCUE Impact Calculator. 2014. Presented at the RESCUE - REnewable Smart Cooling for Urban Europe, Edinburgh, UK, 2014.
  24. [24] Mikkelsen S. E. Værktøj til økonomisk og miljømæssig analyse af hybridanlæg til fjernkøling og fjernvarme - Fjernkøl 2.0. Slutrapport og brugermanual. (Tool for the economical and environmental analysis of hybrid systems for district cooling and district heating - District cooling 2.0 Final report and user manual). Lyngby: COWI, 2013. (in Danish)
  25. [25] HOFOR. District Heating in Copenhagen: Energy-efficient, Low-carbon, and Cost-effective. Kobenhavn: HOFOR, 2016.
  26. [26] CTR, HOFOR, VEKS. Heat Planning for the Greater Copenhagen area, 2014 [Online]. [Accessed 3.05.2017]. Available: http://www.varmeplanhovedstaden.dk/ (in Danish)
  27. [27] Energylab Nordhavn. EnergyLab Nordhavn: New Urban Energy Infrastructures and Smart Components 2016 [Online]. [Accessed 20.09.2017]. Available: http://www.energylabnordhavn.com/about.html
  28. [28] GAMS Development Corp. GAMS [Online]. [Accessed 6.08.2017]. Available: https://www.gams.com/
  29. [29] Pieper H., et al. Allocation of investment costs for large-scale heat pumps supplying district heating. Energy Procedia 2018:147:358–367. http://doi.org/10.1016/j.egypro.2018.07.10410.1016/j.egypro.2018.07.104
  30. [30] Pieper H. Optimal Integration of District Heating, District Cooling, Heat Sources and Heat Sinks. Lyngby: Technical University of Denmark, 2019.
  31. [31] Danish Energy Agency. District Heating Assessment Tool (DHAT). Kobenhavn: DEA, 2017.
  32. [32] The Danish Ministry of Climate Energy and Utilities. Energiaftale af 29. juni 2018. Energy agrement of 29 June 2018. https://kefm.dk/aftaler-og-politiske-udspil/energiaftalen
  33. [33] Danish Energy. Elforsyningens nettariffer & priser (Electricity supply system tariffs and prices). Frederiksberg: Dansk Energi, 2018. (in Danish)
  34. [34] Radius. Tariffs and subscription fee 2019 [Online]. [Accessed 15.03.2019]. Available: https://radiuselnet.dk/Elkunder/Priser-og-vilkaar/Tariffer-og-netabonnement (in Danish)
  35. [35] Pieper H., et al. Modelling framework for integration of large-scale heat pumps in district heating using low-temperature heat sources: A case study of Tallinn, Estonia. Int. J. Sustain. Energy Plan. Manag. 2019:20:67–86. http://doi.org/10.5278/ijsepm.2019.20.6
  36. [36] Energinet. CO2 Emission Data 2018. https://www.energidataservice.dk/tso-electricity/co2emis
  37. [37] Soroudi A. Power System Optimization Modeling in GAMS. Springer International Publishing, 2017. http://doi.org/10.1007/978-3-319-62350-410.1007/978-3-319-62350-4
  38. [38] Ommen T., et al. Generalized COP estimation of heat pump processes for operation off the design point of equipment. Proc 25th IIR Int Congr Refrig 2019:648. https://doi.org/10.18462/iir.icr.2019.0648
  39. [39] HOFOR. Heat demand data for Nordhavn for 2018 [Online]. [Accessed 17.02.2019]. Available: https://energydata.dk/
  40. [40] Tvärne A., et al. EU District Cooling Market and Trends. Rescue – Renewable Smart Cooling for Urban Europe 2014 https://ec.europa.eu/energy/intelligent/projects/sites/iee-projects/files/projects/documents/d2.3_eu_cooling_market_0.pdf
DOI: https://doi.org/10.2478/rtuect-2020-0117 | Journal eISSN: 2255-8837 | Journal ISSN: 1691-5208
Language: English
Page range: 470 - 482
Published on: Dec 14, 2020
Published by: Riga Technical University
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2020 Henrik Pieper, Torben Ommen, Brian Elmegaard, Anna Volkova, Wiebke Brix Markussen, published by Riga Technical University
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.