Have a personal or library account? Click to login
Are Industries Open for Renewable Energy? Cover

References

  1. [1] Data & Statistics – IEA [Online]. [Accessed 09.05.2020]. Available: https://www.iea.org/data-and-statistics?country=WORLD&fuel=Energy%20supply&indicator=CoalProdByType
  2. [2] Directive 2009/28/EC of the European Parliament and of the Council of 23 April 2009 on the promotion of the use of energy from renewable sources and amending and subsequently repealing Directives 2001/77/EC and 2003/30/EC. Official Journal of European Union 2009:L 140/16.
  3. [3] Directive (EU) 2018/2001 of the European Parliament and of the Council of 11 December 2018 on the promotion of the use of energy from renewable sources. Official Journal of European Union 2018:L 328/82.
  4. [4] European Commission. Communication From The Commission To The European Parliament, The European Council, The Council, The European Economic And Social Committee And The Committee Of The Regions The European Green Deal COM/2019/640 final. Brussels: European Commission, 2019.
  5. [5] The Global Risks Report 2020 | World Economic Forum, 2020 [Online]. [Accessed 27.04.2020]. Available: https://www.weforum.org/reports/the-global-risks-report-2020
  6. [6] Central Statistical Bureau of Latvia. ENG090. Elektriskā jauda un saražotā elektroenerģija no atjaunīgiem energoresursiem (Electric power and electricity produced from renewable energy sources) [Online]. [Accessed 03.09.2020]. Available: http://data1.csb.gov.lv/pxweb/lv/vide/vide__energetika__ikgad/ENG090.px/table/tableViewLayout1/ (in Latvian)
  7. [7] European Environmental Agency. Share of renewable energy in gross final energy consumption in Europe — European Environment Agency. 2019 [Online]. [Accessed 13.03.2020]. Available: https://www.eea.europa.eu/data-and-maps/indicators/renewable-gross-final-energy-consumption-4/assessment-4
  8. [8] Cabinet of Ministers. Par Latvijas Nacionālo enerģētikas un klimata plānu 2021.–2030. gadam. (On the Latvian National Energy and Climate Plan 2021–2030 year). Riga: Cabinet of Ministers, 2020.
  9. [9] Meža platība Latvijā turpina pieaugt – pērn tie bija 52 % (Forest area in Latvia continues to grow - last year they were 52%), 2019. [Online]. [Accessed 13.03.2020]. Available: https://www.lsm.lv/raksts/zinas/latvija/meza-platiba-latvijaturpina-pieaugt--pern-tie-bija-52.a325062/
  10. [10] Fraunhofer ISE. Photovoltaics Report. Freiburg: Fraunhofer Institute for Solar Energy Systems, 2019.
  11. [11] REN21 - 2019 Global Status Report. Paris: REN21 Secretariat, 2019.
  12. [12] Briede A. Klimats Latvijā – Nacionālā Enciklopēdija (Climate in Latvia - National Encyclopedia), 2019. [Online]. [Accessed 12.01.2020]. Available: https://enciklopedija.lv/skirklis/26052-klimats-Latvijā (in Latvian)
  13. [13] Blumberga A., et al. Atjaunojamās elektroenerģijas akumulācija (Accumulation of renewable electricity.). Riga: RTU, 2015.
  14. [14] Global Solar Atlas 2.0. [Online]. [Accessed 12.01.2020]. Available: https://globalsolaratlas.info/map
  15. [15] Letcher T. M. Wind Energy Engineering: A Handbook for Onshore and Offshore Wind Turbines. Elsevier, 2017. https://doi.org/10.1016/B978-0-12-809451-8.00001-110.1016/B978-0-12-809451-8.00001-1
  16. [16] Âboltiņš R. Vēja enerģijas izmantošanu ietekmējošo faktoru analīze un iespējamie risinājumi (Analysis of factors influencing wind energy use and possible solutions.). 2019. (in Latvian)
  17. [17] IRENA. Geothermal energy [Online]. [Accessed 13.01.2020]. Available: https://irena.org/geothermal
  18. [18] LVĢMC. Ģeotermālie resursi (Geothermal resources) [Online]. [Accessed 12.05.2020]. Available: https://www.meteo.lv/lapas/geologija/zemes-dzilu-resursi/perspektivie-resursi/geotermalie-resursi/geotermalieresursi?id=1488&nid=496 (in Latvian)
  19. [19] Ezici B., Egilmez G., Gedik R. Assessing the eco-efficiency of U.S. manufacturing industries with a focus on renewable vs. non-renewable energy use: An integrated time series MRIO and DEA approach. Journal of Cleaner Production 2020:253:119630. https://doi.org/10.1016/j.jclepro.2019.11963010.1016/j.jclepro.2019.119630
  20. [20] IRENA. Bioenergy [Online]. [Accessed 15.02.2020]. Available: https://www.irena.org/bioenergy
  21. [21] Jaffe A. B., Stavins R. N. The energy-efficiency gap What does it mean? Energy Policy 1994:22(10):804–810. https://doi.org/10.1016/0301-4215(94)90138-410.1016/0301-4215(94)90138-4
  22. [22] Shmelev S. E., Van Den Bergh J. C. J. M. Optimal diversity of renewable energy alternatives under multiple criteria: An application to the UK. Renewable and Sustainable Energy Reviews 2016:60:679–691. https://doi.org/10.1016/j.rser.2016.01.10010.1016/j.rser.2016.01.100
  23. [23] Maletič D., et al. Analytic Hierarchy Process Application in Different Organisational Settings. Applications and Theory of Analytic Hierarchy Process - Decision Making for Strategic Decisions. InTechOpen, 2016. Available from: https://www.intechopen.com/books/applications-and-theory-of-analytic-hierarchy-process-decision-making-for-strategic-decisions/analytic-hierarchy-process-application-in-different-organisational-settings10.5772/64511
  24. [24] Saaty T. L. A scaling method for priorities in hierarchical structures. Journal of Mathematical Psychology 1977:15(3):234–281. https://doi.org/10.1016/0022-2496(77)90033-510.1016/0022-2496(77)90033-5
  25. [25] Cabala P. Using the Analytic Hierarchy Process in Evaluating Decision Alternatives. Oper. Res. Decis. 2010:20(1):5–23.
  26. [26] Lee H. C., Ter Chang C. Comparative analysis of MCDM methods for ranking renewable energy sources in Taiwan. Renewable and Sustainable Energy Reviews 2018:92:883–896. https://doi.org/10.1016/j.rser.2018.05.00710.1016/j.rser.2018.05.007
  27. [27] Haddad B., Liazid A., Ferreira P. A multi-criteria approach to rank renewables for the Algerian electricity system. Renewable Energy 2017:107:462–472. https://doi.org/10.1016/j.renene.2017.01.03510.1016/j.renene.2017.01.035
  28. [28] Wang J. J., et al. Review on multi-criteria decision analysis aid in sustainable energy decision-making. Renewable and Sustainable Energy Reviews 2009:13(9):2263–2278. https://doi.org/10.1016/j.rser.2009.06.02110.1016/j.rser.2009.06.021
  29. [29] Mulliner E., Malys N., Maliene V. Comparative analysis of MCDM methods for the assessment of sustainable housing affordability. Omega 2016:59(B):146–156. https://doi.org/10.1016/j.omega.2015.05.01310.1016/j.omega.2015.05.013
  30. [30] Strantzali E., Aravossis K. Decision making in renewable energy investments: A review. Renewable and Sustainable Energy Reviews 2016:55:885–898. https://doi.org/10.1016/j.rser.2015.11.02110.1016/j.rser.2015.11.021
DOI: https://doi.org/10.2478/rtuect-2020-0115 | Journal eISSN: 2255-8837 | Journal ISSN: 1691-5208
Language: English
Page range: 447 - 456
Published on: Dec 14, 2020
Published by: Riga Technical University
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2020 Edgars Kudurs, Anrijs Tukulis, Arnis Dzalbs, Dagnija Blumberga, published by Riga Technical University
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.