Have a personal or library account? Click to login
TiO2 Application for the Photocatalytical Inactivation of S. enterica, E. coli and M. luteus Bacteria Mixtures Cover

TiO2 Application for the Photocatalytical Inactivation of S. enterica, E. coli and M. luteus Bacteria Mixtures

Open Access
|Dec 2020

References

  1. [1] Paulus G. K., et al. The impact of on-site hospital wastewater treatment on the downstream communal wastewater system in terms of antibiotics and antibiotic resistance genes. International Journal of Hygiene and Environmental Health 2019:222(4):635–644. https://doi.org/10.1016/j.ijheh.2019.01.00410.1016/j.ijheh.2019.01.004
  2. [2] Al-Rashidi R., Rusan M., Obaid K. Changes in plant nutrients, and microbial biomass in different soil depths after long-term surface application of secondary treated wastewater. Environmental and Climate Technologies 2013:11(1):28–33. https://doi.org/10.2478/rtuect-2013-000410.2478/rtuect-2013-0004
  3. [3] Strade E., Kalnina D. Cost Effective Method for Toxicity Screening of Pharmaceutical Wastewater Containing Inorganic Salts and Harmful Organic Compounds. Environmental and Climate Technologies 2019:23(1):52–63. https://doi.org/10.2478/rtuect-2019-000410.2478/rtuect-2019-0004
  4. [4] Haaken D., et al. Limits of UV disinfection: UV/electrolysis hybrid technology as a promising alternative for direct reuse of biologically treated wastewater. Journal of Water Supply: Research and Technology - AQUA 2013:62(7):442–451. https://doi.org/10.2166/aqua.2013.13410.2166/aqua.2013.134
  5. [5] Bustillo-Lecompte C. F., Mehrvar M. Slaughterhouse wastewater characteristics, treatment, and management in the meat processing industry: A review on trends and advances. Journal of Environmental Management 2015:161:287–302. https://doi.org/10.1016/j.jenvman.2015.07.00810.1016/j.jenvman.2015.07.008
  6. [6] Bustillo-Lecompte C., Mehrvar M., Quiñones-Bolaños E. Slaughterhouse wastewater characterization and treatment: An economic and public health necessity of the meat processing industry in Ontario, Canada. Journal of Geoscience and Environmental Protection 2016:4(4):175–186. https://doi.org/10.4236/gep.2016.4402110.4236/gep.2016.44021
  7. [7] Babu D. S., et al. Detoxification of water and wastewater by advanced oxidation processes. Science of the Total Environment 2019:696:133961. https://doi.org/10.1016/j.scitotenv.2019.13396110.1016/j.scitotenv.2019.133961
  8. [8] Krumins J., Robalds A. Biosorption of metallic elements onto fen peat. Environmental and Climate Technologies 2014:14(1):12–17. https://doi.org/10.1515/rtuect-2014-000810.1515/rtuect-2014-0008
  9. [9] Oliveira A. G., et al. Decontamination and disinfection of wastewater by photocatalysis under UV/visible light using nano-catalysts based on Ca-doped ZnO. Journal of Environmental Management 2019:240:485–493. https://doi.org/10.1016/j.jenvman.2019.03.12410.1016/j.jenvman.2019.03.124
  10. [10] Li C., et al. Enhanced visible-light-induced photocatalytic performance of Bi2O3 /ZnAl-LDH–C for dyes removal in water. Materials Letters 2019:244:215–218. https://doi.org/10.1016/j.matlet.2018.12.08410.1016/j.matlet.2018.12.084
  11. [11] Murgolo S., et al. Degradation of emerging organic pollutants in wastewater effluents by electrochemical photocatalysis on nanostructured TiO2 meshes. Water Research 2019:164:114920. https://doi.org/10.1016/j.watres.2019.11492010.1016/j.watres.2019.114920
  12. [12] Nogueira V., et al. Treatment of real industrial wastewaters through nano-TiO2 and nano-Fe2O3 photocatalysis: case study of mining and kraft pulp mill effluents. Environmental Technology (United Kingdom) 2018:39(12):1586–1596. https://doi.org/10.1080/09593330.2017.133409310.1080/09593330.2017.1334093
  13. [13] Al-Mamun M. R., et al. Photocatalytic activity improvement and application of UV-TiO2 photocatalysis in textile wastewater treatment: A review. Journal of Environmental Chemical Engineering 2019:7(5):103248. https://doi.org/10.1016/j.jece.2019.10324810.1016/j.jece.2019.103248
  14. [14] Varnagiris S., et al. Floating TiO2 photocatalyst for efficient inactivation of E. coli and decomposition of methylene blue solution. Science of the Total Environment 2020:720:137600. https://doi.org/10.1016/j.scitotenv.2020.13760010.1016/j.scitotenv.2020.137600
  15. [15] Robertson J. M. C, Robertson P. K. J., Lawton L. A. A comparison of the effectiveness of TiO2 photocatalysis and UVA photolysis for the destruction of three pathogenic micro-organisms. Journal of Photochemistry and Photobiology A: Chemistry 2005:175(1):51–56. https://doi.org/10.1016/j.jphotochem.2005.04.03310.1016/j.jphotochem.2005.04.033
  16. [16] Zan L., et al. Photocatalysis effect of nanometer TiO2 and TiO2-coated ceramic plate on Hepatitis B virus. Journal of Photochemistry and Photobiology B: Biology 2007:86(2):165–169. https://doi.org/10.1016/j.jphotobiol.2006.09.00210.1016/j.jphotobiol.2006.09.002
  17. [17] Nobre F. X., et al. Heterogeneous photocatalysis of Tordon 2,4-D herbicide using the phase mixture of TiO2. Journal of Environmental Chemical Engineering 2019:7(6):103501. https://doi.org/10.1016/j.jece.2019.10350110.1016/j.jece.2019.103501
  18. [18] Moreira N. F. F., Narciso-da-Rocha C., Polo-López M. I. Solar treatment (H2O2, TiO2-P25 and GO-TiO2 photocatalysis, photo-Fenton) of organic micropollutants, human pathogen indicators, antibiotic resistant bacteria and related genes in urban wastewater. Water Research 2018:135:195–206. https://doi.org/10.1016/j.watres.2018.01.06410.1016/j.watres.2018.01.064
  19. [19] Jiménez-Tototzintle M., et al. Removal of contaminants of emerging concern (CECs) and antibiotic resistant bacteria in urban wastewater using UVA/TiO2/H2O2 photocatalysis. Chemosphere 2018:210:449–457. https://doi.org/10.1016/j.chemosphere.2018.07.03610.1016/j.chemosphere.2018.07.036
  20. [20] Zheng X., et al. Photocatalytic disinfection performance in virus and virus/bacteria system by Cu-TiO2 nanofibers under visible light. Environmental Pollution 2018:237:452–459. https://doi.org/10.1016/j.envpol.2018.02.07410.1016/j.envpol.2018.02.074
DOI: https://doi.org/10.2478/rtuect-2020-0113 | Journal eISSN: 2255-8837 | Journal ISSN: 1691-5208
Language: English
Page range: 418 - 429
Published on: Dec 14, 2020
Published by: Riga Technical University
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2020 Neringa Kuliesiene, Sandra Sakalauskaite, Simona Tuckute, Marius Urbonavicius, Sarunas Varnagiris, Rimantas Daugelavicius, Martynas Lelis, published by Riga Technical University
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.