Have a personal or library account? Click to login
Quantitative and Financial Aspects of Resilience Bonds in the Context of Recursive Insurance Contracts. A Cost Benefit Analysis Cover

Quantitative and Financial Aspects of Resilience Bonds in the Context of Recursive Insurance Contracts. A Cost Benefit Analysis

Open Access
|Dec 2020

References

  1. [1] UN General Assembly. Resolution 69/283 of 23 June 2015. Sendai framework for disaster risk reduction 2015–2030. United Nations, 2015.
  2. [2] Uniddr. World Conference on Disaster Reduction. Building the Resilience of Nations and Communities to Disasters. Geneva: UNDDR, 2005.
  3. [3] Trærup S. L. M. Informal networks and resilience to climate change impacts: A collective approach to index insurance. Glob. Environ. Chang. 2012:22(1):255–267. https://doi.org/10.1016/j.gloenvcha.2011.09.01710.1016/j.gloenvcha.2011.09.017
  4. [4] Eventi Alluvionali. Report 1. 2019:D. (in Italian) https://annuario.isprambiente.it/sys_ind/79
  5. [5] IVASS. Report Analisi Trend Offerta (Offer Trend Analysis Report). Rome: IVASS, 2019. (in Italian)
  6. [6] Alberti M. Politiche e strumenti di sostegno allo sviluppo delle fonti di energia rinnovabili. Casi di studio in paesi dell’ Unione Europea (Policies and tools to support the development of renewable energy sources. Case studies in European Union countries.). 2010:95. (in Italian)
  7. [7] De Botselier B. How the EU covenant of mayors and climate-adapt strengthen local climate policy-making. A Case Study of the City of Bruges. IED, 2019.
  8. [8] Berghi S. Energy use in Urban Transport sector within the Sustainable Energy Action Plans (SEAPs) of three Italian Big Cities. Energy Procedia 2017:126:414–420. https://doi.org/10.1016/j.egypro.2017.08.19310.1016/j.egypro.2017.08.193
  9. [9] Blazquez J., et al. Economic policy instruments and market uncertainty: Exploring the impact on renewables adoption. Renewable and Sustainable Energy Reviews 2018:94:224–233. https://doi.org/10.1016/j.rser.2018.05.05010.1016/j.rser.2018.05.050
  10. [10] Melica G., et al. Multilevel governance of sustainable energy policies: The role of regions and provinces to support the participation of small local authorities in the Covenant of Mayors. Sustainable Cities Society 2018:39:729–739. https://doi.org/10.1016/j.scs.2018.01.01310.1016/j.scs.2018.01.013
  11. [11] Cinocca A., Santini F., Cipollone R. Monitoring methodologies and tools for the Sustainable Energy Action Plans to support the Public Administration. Energy Procedia 2018:148:758–765. https://doi.org/10.1016/j.egypro.2018.08.13510.1016/j.egypro.2018.08.135
  12. [12] Pescaroli G., Kelman I. How critical infrastructure orients international relief in cascading disasters. Journal of Contingencies Crisis Management 2017:25(2):56–67. https://doi.org/10.1111/1468-5973.1211810.1111/1468-5973.12118
  13. [13] Lhommes S., et al. Analyzing resilience of urban networks: a preliminary step towards more flood resilient cities. Natural Hazards and Earth System Sciences 2013:13:221–230. https://doi.org/10.5194/nhess-13-221-201310.5194/nhess-13-221-2013
  14. [14] Serre D., Heinzlef C. Assessing and mapping urban resilience to floods with respect to cascading effects through critical infrastructure networks. International Journal of Disaster Risk Reduction 2018:30(B):235–2423. https://doi.org/10.1016/j.ijdrr.2018.02.01810.1016/j.ijdrr.2018.02.018
  15. [15] Holling C. S. Resilience and stability of ecological systems. Annual Reviews of Resource Economics 1973:4:1–23. https://doi.org/10.1146/annurev.es.04.110173.00024510.1146/annurev.es.04.110173.000245
  16. [16] Bruneau D. A framework to quantitatively assess and enhance the seismic resilience of communities. Earthquake Spectra 2003:19(4):733–752. https://doi.org/10.1193/1.162349710.1193/1.1623497
  17. [17] Swiss Re-Sigma. Natural catastrophes and man-made disasters in 2013: large losses from floods and hail; Haiyan hits the Philippines. Zurich: Swiss Re, 2014.
  18. [18] Kunreuther H. C., Michel-Kerjan E. O. The Development of New Catastrophe Risk Markets. Annual Review of Resource Economics 2009:1(1):119–137. https://doi.org/10.1146/annurev.resource.050708.14430210.1146/annurev.resource.050708.144302
  19. [19] Statistico B. Bollettino Statistico 2012. Rome: Bank of Italy, 2012. (in Italian)
  20. [20] Relazione sull’attività svolta dall’Istituto nell’anno 2017 (Report on the activity carried out by the Institute in 2017.). Rome: IVASS, 2018.
  21. [21] Kunreuther H. Mitigation and Financial Risk Management for Natural Hazards. The Wharton School University of Pennsylvania Philadelphia, 2001.10.1111/1468-0440.00113
  22. [22] Asaro M., et al. 07 / 11 / 2017 - Le assicurazioni a copertura dei rischi degli enti pubblici e dei dipendenti pubblici tratto (07/11/2017 - Insurance covering the risks of public bodies and public employees tract.). Brescia: National Professional Association of Municipal and Provincial Secretaries, 2020. (In Italian).
  23. [23] Roberts R. S. Economic Strategies for Coastal Disaster Risk-Reduction: A Case Study of Exmouth. Western Australia: Murdoch University, 2012.
  24. [24] Botzen W. J. W., Van Den Bergh J. C. J. M. Insurance against climate change and flooding in the Netherlands: present, future, and comparison with other countries. Risk Analysis 2008:28(2):413–426. https://doi.org/10.1111/j.1539-6924.2008.01035.x10.1111/j.1539-6924.2008.01035.x18419658
  25. [25] Rumson A., et al. Coastal risk adaptation: the potential role of accessible geospatial Big Data. Marine Policy 2017:83:100–110. https://doi.org/10.1016/j.marpol.2017.05.03210.1016/j.marpol.2017.05.032
  26. [26] Filatova T. Veen A. Microeconomic Motives of Land Use Change in Coastal Zone Area: Agent Based Modelling Approach. Twente: University of Twente, 2006.
  27. [27] Bertoldi P., et al. Guidebook “How to develop a Sustainable Energy and Climate Action Plan (SECAP)”: PART 2 – Baseline Emission Inventory (BEI) and Risk and Vulnerability Assessment (RVA). Luxembourg: European Union, 2018.
  28. [28] Kaspersen P. S., Halsnæs K. Integrated climate change risk assessment: a practical application for urban flooding during extreme precipitation. Climate Services 2017:6:55–64. https://doi.org/10.1016/j.cliser.2017.06.01210.1016/j.cliser.2017.06.012
  29. [29] EEA. Urban adaptation to climate change in Europe 2016. Transforming cities in a changing climate. No 12/2016. Luxembourg: Publications Office of the European Union, 2016.
  30. [30] Bellieri dei Belliera A., et al. Flood risk insurance: the Blockchain approach to a Bayesian adaptive design of the contract. 2019.
DOI: https://doi.org/10.2478/rtuect-2020-0111 | Journal eISSN: 2255-8837 | Journal ISSN: 1691-5208
Language: English
Page range: 387 - 402
Published on: Dec 14, 2020
Published by: Riga Technical University
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2020 Andrea Jonathan Pagano, Francesco Romagnoli, Emanuele Vannucci, published by Riga Technical University
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.