Have a personal or library account? Click to login
Blockchain for LBG Maritime Energy Contracting and Value Chain Management: A Green Shipping Business Model for Seaports Cover

Blockchain for LBG Maritime Energy Contracting and Value Chain Management: A Green Shipping Business Model for Seaports

By: Robert Philipp  
Open Access
|Dec 2020

References

  1. [1] Funke M., Yu H. The emergence and spatial distribution of Chinese seaport cities. China Economic Review 2011:22(2):196–209. https://doi.org/10.1016/j.chieco.2011.01.00210.1016/j.chieco.2011.01.002
  2. [2] Pastori E. Modal share of freight transport to and from EU ports. Policy Department B: Structural and Cohesion Policies European Parliament, Brussels: Belgium, 2015.
  3. [3] Eurostat. Country level - gross weight of goods handled in all ports [Online]. [Accessed 31.12.2019]. Available: http://appsso.eurostat.ec.europa.eu/nui/show.do?dataset=mar_mg_aa_cwh&lang=en
  4. [4] Eurostat. Country level - passengers embarked and disembarked in all ports [Online]. [Accessed 31.12.2019]. Available: http://appsso.eurostat.ec.europa.eu/nui/show.do?dataset=mar_mp_aa_cph&lang=en
  5. [5] European Commission. Communication from The Commission Ports: an engine for growth [Online]. [Accessed 31.12.2019]. Available: http://eur-lex.europa.eu/legal-content/EN/TXT/?qid=1467292504679&uri=CELEX:52013DC0295
  6. [6] International Transport Forum at the OECD. Global trade: International freight transport to quadruple by 2050. Paris, France, 2015.
  7. [7] Gerlitz L., Philipp R., Beifert A. Smart and Sustainable Cross-Sectoral Stakeholder Integration into Macro-Regional LNG Value Chain. Proceedings of the International Conference on Reliability and Statistics in Transportation and Communication 2018:36:112–126. https://doi.org/10.1007/978-3-319-74454-4_1110.1007/978-3-319-74454-4_11
  8. [8] Philipp R., Ozarska A., Prause G. Sustainable Electronic Product Development in the Baltic Sea Region: A Regional Gap Analysis of Lab Testing Services. Environmental and Climate Technologies 2019:23(3):85–100. https://doi.org/10.2478/rtuect-2019-008110.2478/rtuect-2019-0081
  9. [9] Philipp R., Prause G., Meyer C. Blue Growth Potential in South Baltic Sea Region. Transport and Telecommunication Journal 2020:21(1):69–83. https://doi.org/10.2478/ttj-2020-000610.2478/ttj-2020-0006
  10. [10] Philipp R., Gerlitz L., Prause G. Regionale Häfen auf Digitalisierungskurs: Intelligentes Wachstum und nachhaltige Wertschöpfung entlang der kleinen und mittel-großen Häfen des Ostseeraumes (Regional ports on course for digitization: intelligent growth and sustainable value creation along the small and medium-sized ports of the Baltic Sea region). Proceedings of WiWiTa 2018 Conference 2018:77–86. (in German)
  11. [11] European Commission. Communication from The Commission to The European Parliament, The Council, The European Economic and Social Committee and The Committee of The Regions Blue Growth - Opportunities for marine and maritime sustainable growth. Brussels: European Commission, 2012.
  12. [12] Madjidian J., et al. Developing a strategy for LNG powered transport corridors in the Baltic Sea Region. 2017.10.1007/978-3-319-74576-3_27
  13. [13] Olaniyi E. O., Gerber P., Prause G. Strategic Energy Partnership in Shipping. Proceedings of the International Conference on Reliability and Statistics in Transportation and Communication 2017:102–111. https://doi.org/10.1007/978-3-319-74454-4_1010.1007/978-3-319-74454-4_10
  14. [14] International Maritime Organisation. IMO sets 2020 date for ships to comply with low sulphur fuel oil requirement [Online]. [Accessed 31.12.2019]. Available: http://www.imo.org/en/MediaCentre/PressBriefings/Pages/MEPC-70-2020sulphur.aspx
  15. [15] Notteboom T. The impact of low sulphur fuel requirements in shipping on the competitiveness of roro shipping in Northern Europe. WMU Journal of Maritime Affairs 2011:10(1):63–95. https://doi.org/10.1007/s13437-010-0001-710.1007/s13437-010-0001-7
  16. [16] Olaniyi E. O., Prause G., Boyesen J. The Impact of SECA Regulations on Clean Shipping in the Baltic Sea Region. Trends and challenges in maritime energy management 2018:309–323. https://doi.org/10.1007/978-3-319-74576-3_2210.1007/978-3-319-74576-3_22
  17. [17] Atari S., Prause G. Risk assessment of emission abatement technologies for clean shipping. Proceedings of the International Conference on Reliability and Statistics in Transportation and Communication 2017:93–101. https://doi.org/10.1007/978-3-319-74454-4_910.1007/978-3-319-74454-4_9
  18. [18] Prause G., et al. The Socio-Economic Impact of Green Shipping: A Holistic View from the Baltic Sea Region. Proceedings of the International Conference on Reliability and Statistics in Transportation and Communication 2018:615–624. https://doi.org/10.1007/978-3-030-12450-2_5910.1007/978-3-030-12450-2_59
  19. [19] Gerasimova V., Philipp R., Prause G. Service Design for Smart Supply Chains. Proceedings of the International Conference on Reliability and Statistics in Transportation and Communication 2021:[Forthcoming].10.1007/978-3-030-68476-1_35
  20. [20] Meyer C., Philipp R., Gerlitz L. Reinforcing Innovation and Competitiveness of SMEs by new Maritime Clustering Initiatives in South Baltic Sea Region. Proceedings of the International Conference on Reliability and Statistics in Transportation and Communication 2021:[Forthcoming].10.1007/978-3-030-68476-1_59
  21. [21] Philipp R., Gerlitz L., Moldabekova A. Small and Medium-Sized Seaports on the Digital Track: Tracing Digitalisation across the South Baltic Region by Innovative Auditing Procedures. Proceedings of the International Conference on Reliability and Statistics in Transportation and Communication 2020:351–362. https://doi.org/10.1007/978-3-030-44610-9_3510.1007/978-3-030-44610-9_35
  22. [22] Philipp R. Digital Readiness Index Assessment towards Smart Port Development. Sustainability Management Forum 2020:28(1):49–60. https://doi.org/10.1007/s00550-020-00501-510.1007/s00550-020-00501-5
  23. [23] Prause G., Atari S. On sustainable production networks for Industry 4.0. Entrepreneurship and Sustainability Issues 2017:4(4):421–431. https://doi.org/10.9770/jesi.2017.4.4(2)10.9770/jesi.2017.4.4(2)
  24. [24] Olaniyi E. O., Atari S., Prause G. Maritime energy contracting for clean shipping. Transport and Telecommunication Journal 2018:19(1):31–44. https://doi.org/10.2478/ttj-2018-000410.2478/ttj-2018-0004
  25. [25] Olaniyi E. O., Gerlitz L. LNG Maritime energy contracting model. Entrepreneurship and Sustainability Issues 2019:7(1):574–594. http://doi.org/10.9770/jesi.2019.9.1(40)10.9770/jesi.2019.7.1(40)
  26. [26] Osterwalder A., Pigneur Y. Business model creation. Amsterdam: Modderman Drukwerk, 2009.
  27. [27] European Commission. Regulation (EU) No 1315/2013 of the European Parliament and of the Council of 11 December 2013 on Union guidelines for the development of the trans-European transport network and repealing Decision No 661/2010/EU Text with EEA relevance. Official Journal of the European Union 2013:L 348/1.
  28. [28] European Commission. Regulation (EU) No 1316/2013 of the European Parliament and of the Council of 11 December 2013 establishing the Connecting Europe Facility, amending Regulation (EU) No 913/2010 and repealing Regulations (EC) No 680/2007 and (EC) No 67/2010 Text with EEA relevance. Official Journal of the European Union 2013:L348/129.
  29. [29] Blumberga D., et al. Modelling of the Installed Capacity of Landfill Power Stations. Environmental and Climate Technologies 2009:3(3):19–26. https://doi.org/10.2478/v10145-009-0002-y10.2478/v10145-009-0002-y
  30. [30] Bengtsson S. K., Fridell E., Andersson K. E. Fuels for short sea shipping: A comparative assessment with focus on environmental impact. Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment 2014:228(1):44–54. https://doi.org/10.1177/147509021348034910.1177/1475090213480349
  31. [31] Pilicka I., Blumberga D., Romagnoli F. Life cycle assessment of biogas production from marine macroalgae: a Latvian scenario. Environmental and Climate technologies 2011:6(1):69–78. https://doi.org/10.2478/v10145-011-0010-610.2478/v10145-011-0010-6
  32. [32] Blumberga A., Timma L., Blumberga D. System dynamic model for the accumulation of renewable electricity using power-to-gas and power-to-liquid concepts. Environmental and Climate Technologies 2015:16(1):54–68. https://doi.org/10.1515/rtuect-2015-001210.1515/rtuect-2015-0012
  33. [33] Spoof-Tuomi K., Niemi S. Environmental and Economic Evaluation of Fuel Choices for Short Sea Shipping. Clean Technologies 2020:2(1):34–52. https://doi.org/10.3390/cleantechnol201000410.3390/cleantechnol2010004
  34. [34] Stenersen D., Thonstad O. GHG and NOx emissions from gas fuelled engines. Mapping, verification, reduction technologies. Trondheim: SINTEF Ocean AS, 2017.
  35. [35] Spoof-Tuomi K., Niemi S. Emission reduction by biogas use in short sea shipping. Integrated energy solutions to smart and green shipping 2019:102–106.
  36. [36] Henesey L., Lizneva Y., Philipp R., Meyer C., Gerlitz L. Improved load planning of roro vessels by adopting blockchain and internet-of-things. Proceedings of the 22nd International Conference on Harbor, Maritime and Multimodal Logistic Modeling & Simulation (HMS 2020) 2020:58-65. https://doi.org/10.46354/i3m.2020.hms.00910.46354/i3m.2020.hms.009
  37. [37] Moldabekova A., et al. Digital Technologies for Improving Logistics Performance of Countries. Transport and Telecommunication Journal 2021:[Forthcoming].10.2478/ttj-2021-0016
  38. [38] Bleyl-Androschin J. W. Conservation first! The new integrated energy-contracting model to combine energy efficiency and renewable supply in large buildings and industry. Proceedings of European Council for an Energy Efficient Economy (ECEEE) 2011:1–14.10.18086/eurosun.2010.08.02
  39. [39] Sorrell S. The economics of energy service contracts. Energy policy 2007:35(1):507–521. https://doi.org/10.1016/j.enpol.2005.12.00910.1016/j.enpol.2005.12.009
  40. [40] GoLNG. Liquid Biogas Business Concept [Online]. [Accessed 31.12.2019]. Available: http://www.golng.eu/files/Main/GoLNG_Blue_Corridor/Field%20to%20Ferry%20business%20model%20concept_final.pdf
  41. [41] Philipp R., Gerlitz L., Prause, G. Smart Contracts for Entrepreneurial Collaboration in Logistics Networks. Proceedings of the 11th international scientific conference “New Challenges of Economic and Business Development – 2019: Incentives for Sustainable Economic Growth” 2019:652–663.
  42. [42] Chuen D. L. K. Handbook of digital currency: Bitcoin, innovation, financial instruments, and big data. Singapore: Academic Press, 2015.
  43. [43] Gallay O., et al. A peer-to-peer platform for decentralized logistics. In Proceedings of the Hamburg International Conference of Logistics (HICL) 2017:19–34. https://doi.org/10.15480/882.1473
  44. [44] Liao D. Y., Wang X. Applications of Blockchain Technology to Logistics Management in Integrated Casinos and Entertainment. Informatics 2018:5(4):44. https://doi.org/10.3390/informatics504004410.3390/informatics5040044
  45. [45] Manski S. Building the blockchain: the co-construction of a global commonwealth to move beyond the crises of global capitalism. Proceedings of the 12th Annual California Graduate Student Conference 2016:1–29.
  46. [46] Swan M. Blockchain: Blueprint for a new economy. Sebastopol: O’Reilly Media, Inc., 2015.
  47. [47] Wu L. Blockchain Smart Contracts in Megacity Logistics. Pennsylvania: The Pennsylvania State University, 2018.
  48. [48] Philipp R., Prause G., Gerlitz L. Blockchain and Smart Contracts for Entrepreneurial Collaboration in Maritime Supply Chains. Transport and Telecommunication Journal 2019:20(4):365–378. https://doi.org/10.2478/ttj-2019-003010.2478/ttj-2019-0030
  49. [49] L’Hermitte C., Wang W., Deakins E. Exploring the Physical Internet Concept to Improve Disaster Relief Operations. Proceedings of ISCRAM Asia Pacific 2018.
  50. [50] Kouhizadeh M., Sarkis J. Blockchain Practices, Potentials, and Perspectives in Greening Supply Chains. Sustainability 2018:10(10):3652. https://doi.org/10.3390/su1010365210.3390/su10103652
  51. [51] García-Bañuelos L., et al. Optimized execution of business processes on blockchain. Proceedings of the International Conference on Business Process Management 2017:130–146. https://doi.org/10.1007/978-3-319-65000-5_810.1007/978-3-319-65000-5_8
  52. [52] Kvale S. Doing interviews. London: Sage publications, 2008.10.4135/9781849208963
  53. [53] Miles M. B., Huberman A. M. Qualitative data analysis: A sourcebook of new methods. Beverly Hills: Sage publications, 1984.
  54. [54] Yin R. K. Case study research and applications: Design and methods. Newburry Park: Sage publications, 1989.
  55. [55] Stopford M. Maritime Economics. New York: Routledge, 2009.10.4324/9780203891742
  56. [56] Henesey L., Philipp R. Evaluating LNG Bunkering Automation Technology. World of Shipping Portugal: An International Research Conference on Maritime Affairs 2019:16–17.
  57. [57] Langfeldt L., Pewe G. European Maritime Safety Agency (EMSA) – Study on Standards and Rules for bunkering of gas-fuelled Ships. Hamburg: Germanischer Lloyd, 2013.
  58. [58] Norta A. Creation of smart-contracting collaborations for decentralized autonomous organizations. Proceedings of the International Conference on Business Informatics Research 2015:3–17. https://doi.org/10.1007/978-3-319-21915-8_110.1007/978-3-319-21915-8_1
  59. [59] Stena Line. Supergreen mit methanol (Supergreen with methanol) [Online]. [Accessed 31.12.2019]. Available: https://www.stenaline.de/supergreen/treibstoff-der-zukunft (in German)
  60. [60] IEA. Outlook for biogas and biomethane. World Energy Outlook Special Report. Paris: International Energy Agency, 2020.
  61. [61] EIA – Independent Statistics and Analysis – U.S. Energy Information Administration. Natural Gas Prices [Online]. [Accessed 31.12.2019]. Available: https://www.eia.gov/dnav/ng/ng_pri_sum_dcu_nus_m.htm
  62. [62] Finanzen.net. Dollarkurs (Dollar exchange rate) [Online]. [Accessed 31.12.2019]. Available: https://www.finanzen.net/devisen/dollarkurs/historisch (in German)
  63. [63] Balland O. LNG – A cost-efficient fuel option? DNV.GL, 2014 [Online]. [Accessed 31.12.2019]. Available: https://www.sjofart.ax/sites/www.sjofart.ax/files/attachments/page/oceaneballand2014.pdf
  64. [64] Madsen R. T. 144-Car Ferry LNG Fuel Conversion Feasibility Study. Life Cycle Cost Analysis. The Glosten Associates, 2011.
  65. [65] Trading economics [Online]. [Accessed 31.12.2019]. Available: https://tradingeconomics.com/
  66. [66] Ship & Bunker – News and Intelligence for the Marine Fuels Industry [Online]. [Accessed 31.12.2019]. Available: https://shipandbunker.com/prices/emea/nwe/nl-rtm-rotterdam#ULSFO
  67. [67] Anderson M., Salo K., Fridell E. Particle-and gaseous emissions from an LNG powered ship. Environmental science & technology 2015:49(20):12568–12575. https://doi.org/10.1021/acs.est.5b0267810.1021/acs.est.5b0267826422536
  68. [68] Burel F., Taccani R., Zuliani N. Improving sustainability of maritime transport through utilization of Liquefied Natural Gas (LNG) for propulsion. Energy 2013:57:412–420. https://doi.org/10.1016/j.energy.2013.05.00210.1016/j.energy.2013.05.002
  69. [69] GoLNG. LNG infrastructure map [Online]. [Accessed 31.12.2019]. Available: http://www.golng.eu/en/bsr-lng-infrastructure-map/
DOI: https://doi.org/10.2478/rtuect-2020-0107 | Journal eISSN: 2255-8837 | Journal ISSN: 1691-5208
Language: English
Page range: 329 - 349
Published on: Dec 14, 2020
Published by: Riga Technical University
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2020 Robert Philipp, published by Riga Technical University
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.