Have a personal or library account? Click to login
Sound Absorption Properties Evaluation and Analysis of Recycled Tyre Textile Fibre Waste Cover

Sound Absorption Properties Evaluation and Analysis of Recycled Tyre Textile Fibre Waste

Open Access
|Dec 2020

References

  1. [1] Corredor-Bedoya A. C., Zoppi R. A., Serpa A. L. Composites of scrap tire rubber particles and adhesive mortar – Noise insulation potential. Cement and Concrete Composites 2017:82:45–66. https://doi.org/10.1016/j.cemconcomp.2017.05.00710.1016/j.cemconcomp.2017.05.007
  2. [2] Frolova O., Salaiová B. Analysis of Road Cover Roughness on “control” Road Section with Crumb Tire Rubber. Procedia Engineering 2017:190:589–596. https://doi.org/10.1016/j.proeng.2017.05.38410.1016/j.proeng.2017.05.384
  3. [3] Asdrubali F., D’Alessandro F., Schiavoni S. A review of unconventional sustainable building insulation materials. Sustainable Materials and Technologies 2015:4:1–17. https://doi.org/10.1016/j.susmat.2015.05.00210.1016/j.susmat.2015.05.002
  4. [4] Islam S., Bhat G. Environmentally-friendly thermal and acoustic insulation materials from recycled textiles. Journal of Environmental Management 2019:251:109536. https://doi.org/10.1016/j.jenvman.2019.10953610.1016/j.jenvman.2019.10953631542622
  5. [5] Vandasova Z., Vencálek O., Puklová V. Specific and combined subjective responses to noise and their association with cardiovascular diseases. Noise & Health 2016:18:338–346.
  6. [6] Hume K. I., Brink M., Basner M. Effects of environmental noise on sleep. Noise & Health 2012:14(61):297–302. https://doi.org/10.4103/1463-1741.10489710.4103/1463-1741.10489723257581
  7. [7] Yankaskas K. Prelude: Noise-induced tinnitus and hearing loss in the military. Hearing Research 2013:295:3–8. https://doi.org/10.1016/j.heares.2012.04.01610.1016/j.heares.2012.04.01622575206
  8. [8] Ecopneus. Green Economy Sustainability Report. Rome, 2013.
  9. [9] Landi D., Vitali S., Germani M. Environmental Analysis of Different End of Life Scenarios of Tires Textile Fibers. Procedia CIRP 2016:48:508–513. https://doi.org/10.1016/j.procir.2016.03.14110.1016/j.procir.2016.03.141
  10. [10] Shulman V. L. Chapter 21-Tyre Recycling. Waste. Academic Press, 2011:297–320. https://doi.org/10.1016/B978-0-12-381475-3.10021-X10.1016/B978-0-12-381475-3.10021-X
  11. [11] Dasgupta S., Hammond W. B., Goddard W. A. Crystal structures and properties of nylon polymers from theory. Journal of the American Chemical Society 1996:118(49):12291–12301. https://doi.org/10.1021/ja944125d10.1021/ja944125d
  12. [12] Henry B., Laitala K., Klepp I. G. Microfibres from apparel and home textiles: Prospects for including microplastics in environmental sustainability assessment. Science of The Total Environment 2019:652:483-494. https://doi.org/10.1016/j.scitotenv.2018.10.16610.1016/j.scitotenv.2018.10.16630368178
  13. [13] Geyer R., Jambeck J. R., Law K.L. Production, use, and fate of all plastics ever made. Science Advances 2017:3(7):e1700782. https://doi.org/10.1126/sciadv.170078210.1126/sciadv.1700782551710728776036
  14. [14] Taylor M. L., et al. Plastic microfibre ingestion by deep-sea organisms. Scienific Reports 2016:6:33997. https://doi.org/10.1038/srep3399710.1038/srep33997504317427687574
  15. [15] Bai M. R., Lo Y-Y., Chen Y. S. Impedance measurement techniques for one-port and two-port networks. The Journal of the Acoustical Society of America 2015:138:2279–90. https://doi.org/10.1121/1.493144010.1121/1.493144026520309
  16. [16] Bujoreanu C., et al. Experimental and theoretical considerations on sound absorption performance of waste materials including the effect of backing plates. Applied Acoustics 2017:119:88–93. https://doi.org/10.1016/j.apacoust.2016.12.01010.1016/j.apacoust.2016.12.010
  17. [17] Amares S., et al. A Review: Characteristics of Noise Absorption Material. Journal of Physics: Conference Series 2017:908:012005. https://doi.org/10.1088/1742-6596/908/1/012005.10.1088/1742-6596/908/1/012005
  18. [18] Alessandro F. D., Pispola G. Sound absorption properties of sustainable fibrous materials in an enhanced reverberation room. 2005 Congress and Exposition on Noise Control Engineering, Rio de Janeiro, Brazil, 2005.
  19. [19] Azkorra Z., et al. Evaluation of green walls as a passive acoustic insulation system for buildings. Applied Acoustics 2015:89:46–56. https://doi.org/10.1016/j.apacoust.2014.09.01010.1016/j.apacoust.2014.09.010
  20. [20] Wertel S. J. Experimental Analysis of Noise Reduction Properties of Sound Absorbing Foam. Wisconsin: Universicty of Wisconsin-Stout, 2000.
  21. [21] Mahmoud I. A. Treatment the Effects of Studio Wall Resonance and Coincidence Phenomena for Recording Noisy Speech Via FPGA Digital Filter. Journal of Telecommunications 2010:2:42–8.
  22. [22] Lu T., Xin F. Vibro-Acoustics of Lightweight Sandwich Structures. Springer Tracts in Mechanical Engineering. California: Springer Nature, 2014. https://doi.org/10.1007/978-3-642-55358-5.10.1007/978-3-642-55358-5
  23. [23] Lee Y. E., Joo C. W. Sound Absorption Properties of Thermally Bonded Nonwovens Based on Composing Fibers and Production Parameters. Journal of Applied Polymer Science 2004:92(4):2295–2302. https://doi.org/10.1002/app.2014310.1002/app.20143
  24. [24] Seddeq H. S. Factors Influencing Acoustic Performance of Sound Absorptive Materials. Australian Journal of Basic and Applied Sciences 2009:3:4610.
  25. [25] Soltani P., Zerrebini M. The analysis of acoustical characteristics and sound absorption coefficient of woven fabrics. Textile Research Journal 2012:82:875–882. https://doi.org/10.1177/004051751140212110.1177/0040517511402121
  26. [26] Sikora J., Turkiewicz J. Sound absorption coefficients of granular materials. Mechanics and Control 2010:29:149–157.
  27. [27] Malaiškienė J., Nagrockienė D., Skripkiūnas G. Possibilities To Use Textile Cord Waste From Used Tires For Concrete. Journal of Environmental Engineering & Landscape Management 2015:23(3):183–191. https://doi.org/10.3846/16486897.2015.105751410.3846/16486897.2015.1057514
  28. [28] Landi D., et al. Reuse scenarios of tires textile fibers: An environmental evaluation. Procedia Manufacturing 2018:21:329–336 https://doi.org/10.1016/j.promfg.2018.02.128.10.1016/j.promfg.2018.02.128
  29. [29] Marconi M., et al. Reuse of Tires Textile Fibers in Plastic Compounds: Is this Scenario Environmentally Sustainable? Procedia CIRP 2018:69:944–949. https://doi.org/10.1016/j.procir.2017.11.07410.1016/j.procir.2017.11.074
  30. [30] Doutres O., et al. Evaluation of the acoustic and non-acoustic properties of sound absorbing materials using a three-microphone impedance tube. Applied Acoustics 2010:71(6):506–509. https://doi.org/10.1016/j.apacoust.2010.01.00710.1016/j.apacoust.2010.01.007
  31. [31] Umnova O., et al. Deduction of tortuosity and porosity from acoustic reflection and transmission measurements on thick samples of rigid-porous materials. Applied Acousttics 2005:66(6):607–624. https://doi.org/10.1016/j.apacoust.2004.02.00510.1016/j.apacoust.2004.02.005
  32. [32] ISO. Acoustics - Determination of sound absorption coefficient and impedance in impedance tubes - Part 1: Method using standing wave ratio 1996:1–20.
  33. [33] ISO. Acoustics - Determination of sound absorption coefficient and impedance in impedance tubes - Part 2: Transfer-function method. Int Stand 1998:1–28.
DOI: https://doi.org/10.2478/rtuect-2020-0106 | Journal eISSN: 2255-8837 | Journal ISSN: 1691-5208
Language: English
Page range: 318 - 328
Published on: Dec 14, 2020
Published by: Riga Technical University
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2020 Robert Ružickij, Tomas Astrauskas, Sarma Valtere, Raimondas Grubliauskas, published by Riga Technical University
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.