Have a personal or library account? Click to login
Evaluation Criteria and Benefit Analysis of Mixing Process in Anaerobic Digesters of Biogas Plants Cover

Evaluation Criteria and Benefit Analysis of Mixing Process in Anaerobic Digesters of Biogas Plants

Open Access
|Dec 2020

References

  1. [1] Lebranchu A., et al. Impact of shear stress and impeller design on the production of biogas in anaerobic digesters. Bioresource Technology 2017:245:1139–1147. https://doi.org/10.1016/j.biortech.2017.07.11310.1016/j.biortech.2017.07.11328863993
  2. [2] Djossou A., Conti F. Mesophilic and thermophilic bacteria in anaerobic digestion process. Proceeding of 27th EUBCE-European Biomass Conference and Exhibition 2019:942–945. https://doi.org/10.5071/27thEUBCE2019-2CV.6.9
  3. [3] Trentini M., Lorenzon M., Conti F. Biotechnology to investigate the microbial community responsible of biogas production from biomass. Proceeding of 26th EUBCE-European Biomass Conference and Exhibition 2018:816–820. https://doi.org/10.5071/26thEUBCE2018-2CV.5.35
  4. [4] Castellan N., Conti F. Molecular biotechnology to improve biofuel production from biomass. Proceeding of 27th EUBCE-European Biomass Conference and Exhibition 2019:951–957. https://doi.org/10.5071/27thEUBCE2019-2CV.6.24
  5. [5] Owen W. F. Energy in wastewater treatment. New Jersey: Prentice-Hall Inc., Englewood Cliffs, 1982.
  6. [6] Sindall R. C., Bridgeman J., Carliell-Marquet C. Velocity gradient as a tool to characterize the link between mixing and biogas production in anaerobic waste digesters. Water Science Technology 2013:67(12):2800–2806. https://doi.org/10.2166/wst.2013.20610.2166/wst.2013.20623787320
  7. [7] Naegele H., et al. Electric energy consumption of the full scale research biogas plant “Unterer Lindenhof”: results of longterm and full detail measurements. Energies 2012:5:5198–5214. https://doi.org/10.3390/en512519810.3390/en5125198
  8. [8] Lopez-Jimenez P. A., et al. Application of CFD methods to an anaerobic digester: the case of Ontinyent WWPT, Valencia, Spain. Journal Water Process Engineering 2015:7:131–140. https://doi.org/10.1016/j.jwpe.2015.05.00610.1016/j.jwpe.2015.05.006
  9. [9] Shen F., et al. Improving the mixing performances of rice straw anaerobic digestion for higher biogas production by computational fluid dynamics (CFD) simulation. Applied Biochemistry and Biotechnology 2013:171:626–642. https://doi.org/10.1007/s12010-013-0375-z10.1007/s12010-013-0375-z23873639
  10. [10] Conti F., Saidi A., Goldbrunner M. Numeric simulated-based analysis of the mixing process in anaerobic digesters of biogas plants. Chemical Engineering & Technology 2020:43:1–9. https://doi.org/10.1002/ceat.20190065010.1002/ceat.201900650
  11. [11] Conti F., Saidi A., Goldbrunner M. CFD modelling of biomass mixing in anaerobic digesters of biogas plants. Environmental and Climate Technologies 2019:23(3):57–69. https://doi.org/10.2478/rtuect-2019-007910.2478/rtuect-2019-0079
  12. [12] Singh B., Szamosi Z., Simenfalvi Z. State of the art on mixing in an anaerobic digester: a review. Renewable Energy 2019:141:922–936. https://doi.org/10.1016/j.renene.2019.04.07210.1016/j.renene.2019.04.072
  13. [13] Kowalczyk A., et al. Different mixing modes for biogas plants using energy crops. Applied Energy 2013:112:465–472. https://doi.org/10.1016/j.apenergy.2013.03.06510.1016/j.apenergy.2013.03.065
  14. [14] Conti F., et al. Thermal behaviour of viscosity of aqueous cellulose solutions to emulate biomass in anaerobic digesters. New Journal of Chemistry 2018:42:1099–1104. https://doi.org/10.1039/c7nj03199h10.1039/C7NJ03199H
  15. [15] Conti F., et al. Effect of mixing of waste biomass in anaerobic digesters for production of biogas. IOP Conference Series: Materials Science and Engineering 2018:446:012011. https://doi.org/10.1088/1757-899X/446/1/01201110.1088/1757-899X/446/1/012011
  16. [16] Gerogiorgis D. I., Ydstie B. E. Multiphysics CFD modelling for design and simulation of a multiphase chemical reactor. Chemical Engineering Research and Design 2005:83(6):603–610. https://doi.org/10.1205/cherd.0436410.1205/cherd.04364
  17. [17] Wiedemann L., et al. Modeling mixing in anaerobic digesters with computational fluid dynamics validated by experiments. Chemical Engineering & Technology 2018:41:2101–2110. https://doi.org/10.1002/ceat.20180008310.1002/ceat.201800083
  18. [18] Leonzio G. Study of mixing systems and geometric configurations for anaerobic digesters using CFD analysis. Renewable Energy 2018:123:578–589. https://doi.org/10.1016/j.renene.2018.02.0710.1016/j.renene.2018.02.071
  19. [19] Wu B. CFD investigation of turbulence models for mechanical agitation of non-Newtonian fluids in anaerobic digesters. Water Resources 2011:45:2082–2094. https://doi.org/10.1016/j.watres.2010.12.02010.1016/j.watres.2010.12.020
  20. [20] Alexopoulos A. H., Maggioris D., Kiparissides C. CFD analysis of turbulence non-homogeneity in mixing vessels: a two-compartment model. Chemical Engineering Science 2002:57(10):1735–1752. https://doi.org/10.1016/S0009-2509(02)00053-210.1016/S0009-2509(02)00053-2
  21. [21] Bridgeman J. Computational fluid dynamics modelling of sewage sludge mixing in an anaerobic digester. Advances Engineering Software 2012:44(1):54–62. https://doi.org/10.1016/j.advengsoft.2011.05.03710.1016/j.advengsoft.2011.05.037
  22. [22] Dapelo D., Bridgeman J. Assessment of mixing quality in full-scale, biogas-mixed anaerobic digestion using CFD. Bioresource Technology 2018:265:480–489. https://doi.org/10.1016/j.biortech.2018.06.03610.1016/j.biortech.2018.06.03629936352
  23. [23] Celik I. B., et al. Procedure for estimation and reporting of uncertainty due to discretization in CFD applications. Journal of Fluids Engineering 2008:130(7):0780011–0780014. https://doi.org/10.1115/1.296095310.1115/1.2960953
  24. [24] Conti F., et al. Mixing of a Model Substrate in a Scale-down Laboratory Digester and Processing with a Computational Fluid Dynamics Model. Proceeding of 26th EUBCE-European Biomass Conference and Exhibition 2018:811–815. https://doi.org/0.5071/26thEUBCE2018-2CV.5.34
  25. [25] Conti F., et al. Monitoring the mixing of an artificial model substrate in a scale-down laboratory digester. Renewable Energy 2019:132:351–362. https://doi.org/10.1016/j.renene.2018.08.01310.1016/j.renene.2018.08.013
  26. [26] Anaergia Technologies [Online]. [Accessed 01.09.2020]. Available: www.uts-products.com
  27. [27] Bansal R. K. A textbook of fluid mechanics and hydraulic machines. New Delhi: Laxmi Publ. Ltd, 2005.
  28. [28] Wiedemann L., et al. Mixing in biogas digesters and development of an artificial substrate for laboratory-scale mixing optimization. Chemical Engineering & Technology 2017:40(2):238–247. https://doi.org/10.1002/ceat.20160019410.1002/ceat.201600194
  29. [29] Wiedemann L., et al. Investigation and optimization of the mixing in a biogas digester with a laboratory experiment and an artificial model substrate. Proceeding of 25th EUBCE-European Biomass Conference and Exhibition 2017:889–892. https://doi.org/10.5071/25thEUBCE2017-2CV.4.14
  30. [30] Ding J., et al. CFD optimization of continuous stirred-tank (CSTR) reactor for biohydrogen production. Bioresource Technology 2010:101(18):7005–7013. https://doi.org/10.1016/j.biortech.2010.03.14610.1016/j.biortech.2010.03.146
  31. [31] Keshtkar A., et al. Mathematical modelling of non-ideal mixing continuous flow reactors for anaerobic digestion of cattle manure. Bioresource Technology 2003:87(1):113–124. https://doi.org/10.1016/S0960-8524(02)00104-910.1016/S0960-8524(02)00104-9
  32. [32] Vesvikar M. S., Al-Dahhan M. Flow pattern visualization in a mimic anaerobic digester using CFD. Biotechnology Bioengineering 2005:89(6):719–732. https://doi.org/10.1002/bit.2038810.1002/bit.2038815685599
  33. [33] Saur T., et al. Impact of wall shear stress on initial bacterial adhesion in rotating annular reactor. PLoS ONE 2017:12:0172113. https://doi.org/10.1371/journal.pone.017211310.1371/journal.pone.0172113531296728207869
  34. [34] Garcia-Ochoa F., et al. The effect of hydrodynamic stress on the growth of Xanthomonas campestris cultures in a stirred and sparged tank bioreactor. Bioprocess and Biosystems Engineering 2013:36:911–925. https://doi.org/10.1007/s00449-012-0825-y10.1007/s00449-012-0825-y23010723
DOI: https://doi.org/10.2478/rtuect-2020-0105 | Journal eISSN: 2255-8837 | Journal ISSN: 1691-5208
Language: English
Page range: 305 - 317
Published on: Dec 14, 2020
Published by: Riga Technical University
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2020 Fosca Conti, Abdessamad Saidi, Markus Goldbrunner, published by Riga Technical University
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.