Have a personal or library account? Click to login
Applicable Predictive Maintenance Diagnosis Methods in Service-Life Prediction of District Heating Pipes Cover

Applicable Predictive Maintenance Diagnosis Methods in Service-Life Prediction of District Heating Pipes

Open Access
|Dec 2020

References

  1. [1] Bevilacqua M., Braglia M. The analytic hierarchy process applied to maintenance strategy selection. Reliability Engineering & System Safety 2000:70(1):71–83. https://doi.org/10.1016/S0951-8320(00)00047-810.1016/S0951-8320(00)00047-8
  2. [2] Mobley R. K. An introduction to predictive maintenance. Amsterdam: Elsevier Butterworth-Heinemann, 2002.10.1016/B978-075067531-4/50006-3
  3. [3] Susto G. A., Beghi A., de Luca C. A Predictive Maintenance System for Epitaxy Processes Based on Filtering and Prediction Techniques. IEEE Trans. Semicond. Manufact. 2012:25(4):638–649. https://doi.org/10.1109/TSM.2012.220913110.1109/TSM.2012.2209131
  4. [4] Holmberg K. E-maintenance. London: Springer, 2010.10.1007/978-1-84996-205-6
  5. [5] Levitt J. Complete guide to predictive and preventive maintenance. New York: Industrial Press, 2011.
  6. [6] Ran Y., et al. A Survey of Predictive Maintenance: Systems, Purposes and Approaches. Ithaca: Cornell University, 2019.
  7. [7] Mobley R. K. Maintenance fundamentals. Amsterdam: Elsevier Butterworth-Heinemann, 2004.
  8. [8] Nachlas J. A. Reliability engineering: Probabilistic models and maintenance methods. Boca Raton: CRC Press, 2017.10.1201/9781315307596
  9. [9] Selcuk S. Predictive maintenance, its implementation and latest trends. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture 2017:231(9):1670–1679. https://doi.org/10.1177/095440541560164010.1177/0954405415601640
  10. [10] Sharma A. PyTorch on Azure: Deep learning in the oil and gas industry [Online]. [Accessed 23.01.2020]. Available: https://azure.microsoft.com/en-us/blog/pytorch-on-azure-deep-learning-in-the-oil-and-gas-industry/?cdn=disable
  11. [11] UNITED NATIONS. About the Sustainable Development Goals - United Nations Sustainable Development [Online]. [Accessed 19.02.2020]. Available: https://www.un.org/sustainabledevelopment/sustainable-development-goals
  12. [12] Lindström J., et al. Towards Intelligent and Sustainable Production: Combining and Integrating Online Predictive Maintenance and Continuous Quality Control. Procedia CIRP 2017:63:443–448. https://doi.org/10.1016/j.procir.2017.03.09910.1016/j.procir.2017.03.099
  13. [13] Kumar A., Shankar R., Thakur L. S. A big data driven sustainable manufacturing framework for condition-based maintenance prediction. Journal of Computational Science 2018:27:428–439. https://doi.org/10.1016/j.jocs.2017.06.00610.1016/j.jocs.2017.06.006
  14. [14] Demoly F., Kiritsis D. Asset Optimization and Predictive Maintenance in Discrete Manufacturing Industry. IFAC Proceedings Volumes 2012:45(31):1–6. https://doi.org/10.3182/20121122-2-ES-4026.0003310.3182/20121122-2-ES-4026.00033
  15. [15] Golinska P., Fertsch M., Marx-Gómez J. Information Technologies in Environmental Engineering. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011.10.1007/978-3-642-19536-5
  16. [16] Jasiulewicz-Kaczmarek M., Drozyner P. Maintenance Management Initiatives Towards Achieving Sustainable Development. In: Golinska P., Fertsch M., Marx-Gómez J. (eds) Information Technologies in Environmental Engineering. Environmental Science and Engineering, vol. 3. Springer, Berlin, Heidelberg.
  17. [17] Pitstop Connect. Reduce Vehicle Emissions with Predictive Maintenance - Climate CoLab [Online]. [Accessed 5.02.2020]. Available: https://www.climatecolab.org/contests/2018/helping-small-medium-businesses-go-low-carbon-ontario/c/proposal/1334500
  18. [18] United States Environmental Protection Agency. Equipment Upgrades and Preventive Maintenance Improve Performance and Reduce SF6 Emissions. US: EPA, 2017.
  19. [19] Moubray J. Reliability-centred maintenance. Amsterdam: Elsevier Butterworth-Heinemann, 1997.
  20. [20] Nowlan F. S., Heap H. F. Reliability-Centered Maintenance. US: United Airlines, 1978.10.21236/ADA066579
  21. [21] AGFW. FW 114 - Instandhaltungsstrategien und Rehabilitationsplanung – Mindestanforderungen. (Maintenance strategies and rehabilitation planning-minimum requirements.) Frankfurt am Main: AGFW, 2013 (in German) Lund H., et al. 4th Generation District Heating (4GDH): Integrating smart thermal grids into future sustainable energy systems. Energy 2014:68:1–11. https://doi.org/10.1016/j.energy.2014.02.08910.1016/j.energy.2014.02.089
  22. [22] Schuchardt G. K., Weidlich I. Sensitivity analysis of the conception of small scale district heating networks on the thermal conductivity of the surrounding soil. Energy Procedia 2017:128:136–143. https://doi.org/10.1016/j.egypro.2017.09.02810.1016/j.egypro.2017.09.028
  23. [23] Pourbozorgi Langroudi P., Weidlich I. Entwicklung von neuen und verbesserten Instandhaltungsstrategien für kleine und große Wärmeverteilnetze durch Kombination statistischer Alterungsmodelle mit materialbasierten Nutzungsdauermodellen: AP1. (Development of new and improved maintenance strategies for small and large heat distribution networks by combining statistical aging models with material-based service life models: AP1.) unpublished intermediate report, project number 03ET1625B. Berlin: Federal Ministry for Economic Affairs and Energy of Germany, 2019. (in German)
  24. [24] Gambarotta A., et al. A Library for the Simulation of Smart Energy Systems: The Case of the Campus of the University of Parma. Energy Procedia 2017:105:1776–1781. https://doi.org/10.1016/j.egypro.2017.03.51410.1016/j.egypro.2017.03.514
  25. [25] Christensen R. Fatigue Analysis of District Heating Systems. 1999.
  26. [26] Weidlich I., Schuchardt G. K. New Approach for Asset Management in District Heating (DH) Networks. Energy Procedia 2017:113:22–27. https://doi.org/10.1016/j.egypro.2017.04.00710.1016/j.egypro.2017.04.007
  27. [27] Chollet F. Deep learning with Python. Shelter Island. NY: Manning, 2018.
  28. [28] Raschka S. Python machine learning: Unlock deeper insights into machine learning with this vital guide to cutting-edge predictive analytics. Birmingham, Mumbai: Packt Publishing open source, 2016.
  29. [29] Murphy K. P. Machine learning: A probabilistic perspective. Cambridge: MIT Press, 2012.
  30. [30] Brunton S. L., Kutz N. J. Data-driven science and engineering: Machine learning, dynamical systems and control. Cambridge: Cambridge University Press, 2019.10.1017/9781108380690
  31. [31] Brunton S. Intro to Data Science: Types of Machine Learning 2 [Online]. [Accessed 17.02.2020]. Available: https://www.youtube.com/watch?v=0_lKUPYEYyY&list=PLMrJAkhIeNNQV7wi9r7Kut8liLFMWQOXn&index=10
  32. [32] Hinton G., et al. Deep Neural Networks for Acoustic Modeling in Speech Recognition: The Shared Views of Four Research Groups. IEEE Signal Process. Mag. 2012:29(6):82–97. https://doi.org/10.1109/MSP.2012.220559710.1109/MSP.2012.2205597
  33. [33] Le V Q., et al. Building high-level features using large scale unsupervised learning. Itacha: Cornell University, 2011.
  34. [34] Krizhevsky A., et al. Classification with Deep Convolutional Neural Networks. Advances in Neural Information Processing Systems 2012:25(2):1097–1105.
  35. [35] Pereira F., et al. Advances in Neural Information Processing Systems 25. Curran Associates, 2012.
  36. [36] van Veen F. The Neural Network Zoo. The Asimov Institute, 2016. [Online]. [Accessed 18.02.2020]. Available: https://www.asimovinstitute.org/neural-network-zoo
  37. [37] Meireles M.R.G., Almeida P.E.M., Simoes M. G. A comprehensive review for industrial applicability of artificial neural networks. IEEE Trans. Ind. Electron. 2003:50(3):585–601. https://doi.org/10.1109/TIE.2003.81247010.1109/TIE.2003.812470
  38. [38] Brownlee J. Deep Learning With Python: Develop Deep Learning Models On Theano And TensorFlow Using Keras. Vermont Victoria: Machine Learning Mastery, 2016.
  39. [39] Al-Barqawi H., Zayed T. Condition Rating Model for Underground Infrastructure Sustainable Water Mains. J. Perform. Constr. Facil. 2006:20(2):126–135. https://doi.org/10.1061/(ASCE)0887-3828(2006)20:2(126)10.1061/(ASCE)0887-3828(2006)20:2(126)
  40. [40] Al-Barqawi H., Zayed T. Infrastructure Management: Integrated AHP/ANN Model to Evaluate Municipal Water Mains’ Performance. J. Infrastruct. Syst. 2008:14(4):305–318. https://doi.org/10.1061/(ASCE)1076-0342(2008)14:4(305)10.1061/(ASCE)1076-0342(2008)14:4(305)
  41. [41] Senouci A., et al. A model for predicting failure of oil pipelines. Structure and Infrastructure Engineering 2014:10(3):375–387. https://doi.org/10.1080/15732479.2012.75691810.1080/15732479.2012.756918
  42. [42] Sharma A. PyTorch on Azure: Deep learning in the oil and gas industry [Online]. [Accessed 30.10.2019]. Available: https://azure.microsoft.com/en-us/blog/pytorch-on-azure-deep-learning-in-the-oil-and-gas-industry/?cdn=disable
  43. [43] Tereshchenko T., Nord N. Importance of Increased Knowledge on Reliability of District Heating Pipes. Procedia Engineering 2016:146:415–423. https://doi.org/10.1016/j.proeng.2016.06.42310.1016/j.proeng.2016.06.423
DOI: https://doi.org/10.2478/rtuect-2020-0104 | Journal eISSN: 2255-8837 | Journal ISSN: 1691-5208
Language: English
Page range: 294 - 304
Published on: Dec 14, 2020
Published by: Riga Technical University
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2020 Pakdad Pourbozorgi Langroudi, Ingo Weidlich, published by Riga Technical University
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.