Have a personal or library account? Click to login
Solar Photovoltaic Optimal Tilt Angles in Public Building Cover

Solar Photovoltaic Optimal Tilt Angles in Public Building

Open Access
|Dec 2020

References

  1. [1] Cucchiella F., Gastaldi M., Trosini M. Investments and cleaner energy production: A portfolio analysis in the Italian electricity market. Journal of Cleaner Production 2017:142:121–132. https://doi.org/10.1016/j.jclepro.2016.07.19010.1016/j.jclepro.2016.07.190
  2. [2] Lo Brano V., et al. A survey on energy performance of the non-residential public building stock in Southern Italy; toward a decision support tool for refurbishment actions. 2nd South-East European conference on sustainable development of energy, water and environment systems, Piran, Slovenia, 2016.
  3. [3] D’Alpaos C., Bragolusi P. Prioritization of Energy Retrofit Strategies in Public Housing: An AHP Model. In: Calabrò F., Della Spina L., Bevilacqua C. (eds) New Metropolitan Perspectives. ISHT 2018. Smart Innovation, Systems and Technologies, vol 101. Springer, Cham. https://doi.org/10.1007/978-3-319-92102-0_5610.1007/978-3-319-92102-0_56
  4. [4] Annunziata E., Rizzi F., Frey M. Enhancing energy efficiency in public buildings: The role of local energy audit programmes. Energy Policy 2014:69:364–373. https://doi.org/10.1016/j.enpol.2014.02.02710.1016/j.enpol.2014.02.027
  5. [5] Single Portal of School Data. Dataset Catalog [Online]. [Accessed 24.10.2020]. Available at: https://dati.istruzione.it/opendata/opendata/catalogo/ (in Italian)
  6. [6] Italian Law no. 373, 30/04/1976. Standards for the containment of energy consumption for thermal uses in buildings.
  7. [7] Reiss J. Energy Retrofitting of School Buildings to Achieve Plus Energy and 3-litre Building Standards. Energy Procedia 2014:48:1503–1511. https://doi.org/10.1016/j.egypro.2014.02.17010.1016/j.egypro.2014.02.170
  8. [8] Testi D., et al. Criticalities in the NZEB retrofit of scholastic buildings: analysis of a secondary school in Centre Italy. Energy Procedia 2017:140:252–264. https://doi.org/10.1016/j.egypro.2017.11.14010.1016/j.egypro.2017.11.140
  9. [9] Kittipongvises S. Assessment of Environmental Impacts of Limestone Quarrying Operations in Thailand. Environmental and Climate Technologies 2017:20:67–83. https://doi.org/10.1515/rtuect-2017-001110.1515/rtuect-2017-0011
  10. [10] IRENA. Future of Solar Photovoltaic: Deployment, investment, technology, grid integration and socio-economic aspects. A Global Energy Transformation. Abu Dhabi: IRENA, 2019.
  11. [11] Annibaldi V., Cucchiella F., De Berardinis P., Gastaldi M., Rotilio M. An integrated sustainable and profitable approach of energy efficiency in heritage buildings. Journal of Cleaner Production, 2020:251:119516. https://doi.org/10.1016/j.jclepro.2019.11951610.1016/j.jclepro.2019.119516
  12. [12] Dobreva P., van Dyk E. E., Vorster F. J. New approach to evaluating predictive models of photovoltaic systems. Solar Energy 2020:204:134–143. https://doi.org/10.1016/j.solener.2020.04.02810.1016/j.solener.2020.04.028
  13. [13] Latvels J., et al. Improvement of Solar PV Efficiency. Potential Materials for Organic Photovoltaic Cells. Environmental and Climate Technologies 2013:12:28–33. https://doi.org/10.2478/rtuect-2013-001310.2478/rtuect-2013-0013
  14. [14] Pakere I., Blumberga D. Solar Energy in Low Temperature District Heating. Environmental and Climate Technologies 2019:23:147–158. https://doi.org/10.2478/rtuect-2019-008510.2478/rtuect-2019-0085
  15. [15] Ning G., et al. BIM-based PV system optimization and deployment. Energy and Buildings 2017:150:13–22. https://doi.org/10.1016/j.enbuild.2017.05.08210.1016/j.enbuild.2017.05.082
  16. [16] Alsadi S., Khatib T. Photovoltaic Power Systems Optimization Research Status: A Review of Criteria, Constrains, Models, Techniques, and Software Tools. Applied Sciences 2018:8(10). https://doi.org/10.3390/app810176110.3390/app8101761
  17. [17] Umar N., et al. Comparison of different PV power simulation softwares: case study on performance analysis of 1 MW grid-connected PV solar power plant. International Journal of Engineering Science Invention 2018:7:11–24.
  18. [18] Zinzi M., Battistini G., Ragazzini V. Energy and Environmental Monitoring of a School Building Deep Energy Renovation in Italy. Energy Procedia 2015:78:3318–3323. https://doi.org/10.1016/j.egypro.2015.11.74410.1016/j.egypro.2015.11.744
  19. [19] Zinzi M., et al. Retrofit of an Existing School in Italy with High Energy Standards. Energy Procedia 2014:48:1529–1538. https://doi.org/10.1016/j.egypro.2014.02.17310.1016/j.egypro.2014.02.173
  20. [20] Cucchiella F., D’Adamo I., Gastaldi M. A profitability assessment of small-scale photovoltaic systems in an electricity market without subsidies. Energy Conversion and Management 2016:129:62–74. https://doi.org/10.1016/j.enconman.2016.09.07510.1016/j.enconman.2016.09.075
  21. [21] Cucchiella F., D’Adamo I., Gastaldi M. Economic Analysis of a Photovoltaic System: A Resource for Residential Households. Energies 2017:10(6):814. https://doi.org/10.3390/en1006081410.3390/en10060814
  22. [22] Jacobson M. Z., Jadhav V. World estimates of PV optimal tilt angles and ratios of sunlight incident upon tilted and tracked PV panels relative to horizontal panels. Solar Energy 2018:169:55–66. https://doi.org/10.1016/j.solener.2018.04.03010.1016/j.solener.2018.04.030
  23. [23] Yadav A. K., Chandel S. S. Tilt angle optimization to maximize incident solar radiation: A review. Renewable and Sustainable Energy Reviews 2013:23:503–513. https://doi.org/10.1016/j.rser.2013.02.02710.1016/j.rser.2013.02.027
  24. [24] Pastare L., Romagnoli F. Life Cycle Cost Analysis of Biogas Production from Cerathophyllum demersum, Fucus vesiculosus and Ulva intestinalis in Latvian Conditions. Environmental and Climate Technologies 2019:23(2):258–271. https://doi.org/10.2478/rtuect-2019-006710.2478/rtuect-2019-0067
  25. [25] Jacobson M. Z., et al. 100% Clean and Renewable Wind, Water, and Sunlight All-Sector Energy Roadmaps for 139 Countries of the World. Joule 2017:1(1):108–121. https://doi.org/10.1016/j.joule.2017.07.00510.1016/j.joule.2017.07.005
  26. [26] Rotilio M., De Berardinis P., Cucchiella F. Renewable Energy Sources in Minor Historical Centers. New Scenarios of Sustainable Development of the Territory. Sustainable Future Energy Technology and Supply Chains 2015:75–106. https://doi.org/10.1007/978-3-319-02696-1_410.1007/978-3-319-02696-1_4
  27. [27] Energy Account [Online]. [Accessed 24.10.2020]. Available at: https://www.gse.it/servizi-per-te/fotovoltaico/contoenergia (in Italian)
  28. [28] ISO 15686-5:2017 Buildings and constructed assets – Service life planning - Part 5: Life-cycle costing.
  29. [29] Annibaldi V., Cucchiella F., Rotilio M. A Sustainable Solution for Energy Efficiency in Italian Climatic Contexts. Energies 2020:13(11):2817. https://doi.org/10.3390/en1311281710.3390/en13112817
  30. [30] Petrarca S., Cogliani E., Spinelli ENEA, Average global solar radiation on the ground in Italy 1994–1999, 2000 [Online]. [Accessed 24.10.2020]. Available at: http://www.solaritaly.enea.it/Documentazione/La%20radiazione%20solare%20globale%20al%20suolo%20in%20Italia.pdf (in Italian)
  31. [31] Riscaldamento e raffrescamento degli edifici - Dati climatici - Parte 1: Medie mensili per la valutazione della prestazione termo-energetica dell’edificio e metodi per ripartire l’irradianza solare nella frazione diretta e diffusa e per calcolare l’irradianza solare su di una superficie inclinata. Heating and cooling of buildings - Climatic data - Part 1: Monthly averages for the evaluation of the thermo-energy performance of the building and methods for distributing the solar irradiance in the direct and diffused fraction and for calculating the solar irradiance on an inclined surface. UNI 10349-1:2016. (In Italian)
  32. [32] Energia solare. Calcolo degli apporti per applicazioni in edilizia. Valutazione dell’ energia raggiante ricevuta. Solar power. Calculation of the contributions for building applications. Evaluation of the radiant energy received. UNI 8477-1:1983. (In Italian)
  33. [33] Electricity price trend for the typical domestic consumer in greater protection [Online]. [Accessed 24.10.2020]. Available: https://www.arera.it/it/dati/eep35.htm (in Italian)
  34. [34] Gholami H., Røstvik H. N. Economic analysis of BIPV systems as a building envelope material for building skins in Europe. Energy 2020:204:117931. https://doi.org/10.1016/j.energy.2020.11793110.1016/j.energy.2020.117931
  35. [35] European Commission. Guide to Cost Benefit Analysis of Investment Projects. Brussels: European Commission, 2015.
  36. [36] Brander M., et al. Electricity-specific emission factors for grid electricity. Econometrica, 2011.
DOI: https://doi.org/10.2478/rtuect-2020-0102 | Journal eISSN: 2255-8837 | Journal ISSN: 1691-5208
Language: English
Page range: 265 - 277
Published on: Dec 14, 2020
Published by: Riga Technical University
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2020 Valeria Annibaldi, Alessia Condemi, Federica Cucchiella, Marianna Rotilio, published by Riga Technical University
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.