[8] Álvarez-Díaz P. D., Ruiz J., Arbib Z., Barragán J., Garrido-Pérez M. C., Perales J. A. Freshwater microalgae selection for simultaneous wastewater nutrient removal and lipid production. Algal Research 2017:24:477–485. https://doi.org/10.1016/j.algal.2017.02.00610.1016/j.algal.2017.02.006
[9] Cuellar-Bermudez S. P., Garcia-Perez J. S., Rittmann B. E., Parra-Saldivar R. Photosynthetic bioenergy utilizing CO2: An approach on flue gases utilization for third generation biofuels. Journal of Cleaner Production 2015:98:53–65. https://doi.org/10.1016/j.jclepro.2014.03.03410.1016/j.jclepro.2014.03.034
[17] Bhola V., Swalaha F., Ranjith Kumar R., Singh M., Bux F. Overview of the potential of microalgae for CO2 sequestration. International Journal Environmental Science and Technology 2014:11(7):2103–2118. https://doi.org/10.1007/s13762-013-0487-610.1007/s13762-013-0487-6
[18] Razzak S. A., Hossain M. M., Lucky R. A., Bassi A. S., de Lasa H. Integrated CO2 capture, wastewater treatment and biofuel production by microalgae culturing—A review. Renewable and Sustainable Energy Reviews 2013:27:622–653. https://doi.org/10.1016/j.rser.2013.05.06310.1016/j.rser.2013.05.063
[24] Liu R., Stanford R. L., Deng Y., Liu D., Liu Y., Yu S. L. The influence of extensive green roofs on rainwater runoff quality: a field-scale study in southwest China. Environmental Science and Pollution Research 2020:27:12932–12941. https://doi.org/10.1007/s11356-019-06151-510.1007/s11356-019-06151-531407262
[25] Xie B. et al. Blending high concentration of anaerobic digestion effluent and rainwater for cost-effective Chlorella vulgaris cultivation in the photobioreactor. Chemical Engineering Journal 2019:360:861–865. https://doi.org/10.1016/j.cej.2018.12.009.10.1016/j.cej.2018.12.009
[37] Directive 91/271/EEC of the European Parliament and of the council concerning urban waste water treatment. Official Journal of the European Communities 1998:1881:1–5.
[40] Litchman E., Edwards K. F., Klausmeier C. A., Thomas M. K. Phytoplankton niches, traits and eco-evolutionary responses to global environmental change. Marine Ecology Progress Series 2012:470:235–248. https://doi.org/10.3354/meps0991210.3354/meps09912
[49] Mandal S., Shurin J. B., Efroymson R. A., Mathews T. J. Functional divergence in nitrogen uptake rates explains diversity–productivity relation ship in microalgal communities. Ecosphere 2018:9(5):e0228. https://doi.org/10.1002/ecs2.222810.1002/ecs2.2228
[55] Candido J. P., Andrade S. J., Fonseca A. L., Silva F. S., Silva M. R. A., Kondo M. M. Ibuprofen removal by heterogeneous photocatalysis and ecotoxicological evaluation of the treated solutions. Environmental Science and Pollution Research 2016:23(19):19911–19920. https://doi.org/10.1007/s11356-016-6947-z10.1007/s11356-016-6947-z27424204
[58] Santos J. I. et al. Environmental safety of cholinium-based ionic liquids: assessing structure–ecotoxicity relationships. Green Chem., 2015:17(9):4657–4668. https://doi.org/10.1039/C5GC01129A10.1039/C5GC01129A
[60] Cheunbarn S., Peerapornpisal Y. Cultivation of Spirulina platensis using anaerobically swine wastewater treatment effluent. Int. J. Agric. Biol., 2010:12(4):586–590.
[64] Nath A., Dixit K., Sundaram S. Developing Designer Microalgae Consortia: A Suitable Approach to Sustainable Wastewater Treatment. In Application of Microalgae in Wastewater Treatment: Volume 1: Domestic and Industrial Wastewater Treatment, S. K. Gupta and F. Bux, Eds. Cham: Springer International Publishing, 2019:57–80. https://doi.org/10.1007/978-3-030-13913-1_410.1007/978-3-030-13913-1_4