Have a personal or library account? Click to login
Temporal Trends in Nitrogen Concentrations and Losses from Agricultural Monitoring Sites in Latvia Cover

Temporal Trends in Nitrogen Concentrations and Losses from Agricultural Monitoring Sites in Latvia

By: Ieva Siksnane and  Ainis Lagzdins  
Open Access
|Dec 2020

References

  1. [1] HELCOM Baltic Sea action plan [Online]. [Accessed 11.02.2020]. Available: https://helcom.fi/baltic-sea-action-plan/
  2. [2] Directive 91/676/EEC of the Council of the European Communities of 12 December 1991 concerning the protection of waters against pollution caused by nitrates from agricultural sources. Official Journal of European Union 1991:L 375/1.
  3. [3] Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policy. Official Journal of European Union 2000:L 327/1.
  4. [4] Veinbergs A., Lagzdins A., Jansons V., Abramenko K., Sudars R. Discharge and nitrogen transfer modelling in the Berze river: A HYPE setup and calibration. Environmental and Climate Technologies 2017:19:51-64. https://doi.org/10.1515/rtuect-2017-000510.1515/rtuect-2017-0005
  5. [5] Siksnane I., Lagzdins A. Assessment of Economic Losses Associated with Nitrogen Leaching in Agricultural Land in Latvia. Proceedings of the 8th International Scientific Conference Rural Development 2017:423-427. http://doi.org/10.15544/RD.2017.20410.15544/RD.2017.204
  6. [6] Siksnane I., Lagzdins A. Analysis of Precipitation and Runoff Conditions in Agricultural Runoff Monitoring Sites. Rural sustainability Research 2018:39(334):26–31. https://doi.org/10.2478/plua-2018-000410.2478/plua-2018-0004
  7. [7] Geospatial information of Latvia University of Life Sciences and Technologies and State limited Liability Company “Latvian Environment, Geology and Meteorology Centre”.
  8. [8] Khaled H., Ramachandra R. A modified Mann-Kendall trend test for autocorrelated data. Journal of Hydrology 1998:204:182–196. https://doi.org/10.1016/S0022-1694(97)00125-X10.1016/S0022-1694(97)00125-X
  9. [9] Helsen D. R., Hirsch R. M. Statistical Methods in Water Resources. Studies in Environmental Science 1992:49:42–60. https://doi.org/10.1016/S0166-1116(08)71096-310.1016/S0166-1116(08)71096-3
  10. [10] Sheng Y., Chun Y. W. Applicability of prewhitening to eliminate the influence of serial correlation on the Mann-Kendall test. Water Recourses Research 2002:38(6):4–1. https://doi.org/10.1029/2001WR00086110.1029/2001WR000861
  11. [11] Yu Y. S., Zou S., Whittemore D. Non-parametric trend analysis of water quality data of rivers in Kansas. Journal of Hydrology 1993:150:61–80. https://doi.org/10.1016/0022-1694(93)90156-410.1016/0022-1694(93)90156-4
  12. [12] Stålnacke P., et al. Temporatl trends in nitrogen concentrations and losses from agricultural catchments in the Nordic and Baltic countries. Agriculture, Ecosystems and Environment 2014:198:94–103. https://doi.org/10.1016/j.agee.2014.03.02810.1016/j.agee.2014.03.028
  13. [13] Donohue R., et al. Trends in total phosphorus and total nitrogen concentrations of tributaries to the Swan–Canning Estuary, 1987 to 1998. Hydrological Processes 2001:15(13):2411–2434. https://doi.org/10.1002/hyp.30010.1002/hyp.300
DOI: https://doi.org/10.2478/rtuect-2020-0094 | Journal eISSN: 2255-8837 | Journal ISSN: 1691-5208
Language: English
Page range: 163 - 173
Published on: Dec 14, 2020
Published by: Riga Technical University
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2020 Ieva Siksnane, Ainis Lagzdins, published by Riga Technical University
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.