Have a personal or library account? Click to login
Application of the Methods for Comprehensive Reliability Analysis of District Heating Systems Cover

Application of the Methods for Comprehensive Reliability Analysis of District Heating Systems

By: Ivan Postnikov  
Open Access
|Dec 2020

References

  1. [1] Lund H., et al. The status of 4th generation district heating: Research and results. Energy 2018:164:147–159. https://doi.org/10.1016/j.energy.2018.08.20610.1016/j.energy.2018.08.206
  2. [2] Vigants E., Prodanuks T., Vigants G., Veidenberg I., Blumberga D. Modelling of Technological Solutions 4th Generation DH Systems. Environmental and Climate Technologies 2017:20:5–23. https://doi.org/10.1515/rtuect-2017-000710.1515/rtuect-2017-0007
  3. [3] Volkova A., Masatin V., Siirde A. Methodology for evaluating the transition process dynamics towards 4th generation district heating networks. Energy 2018:150:253–261. https://doi.org/10.1016/j.energy.2018.02.12310.1016/j.energy.2018.02.123
  4. [4] Ziemele J., Gravelsins A., Blumberga A., Blumberga D. The effect of energy efficiency improvements on the development of 4th generation district heating. Energy Procedia 2016:95:522–527. https://doi.org/10.1016/j.egypro.2016.09.07910.1016/j.egypro.2016.09.079
  5. [5] Ziemele J., Gravelsins A., Blumberga A., Blumberga D. Combining energy efficiency at source and at consumer to reach 4th generation district heating: Economic and system dynamics analysis. Energy 2017:137:595–606. https://doi.org/10.1016/j.energy.2017.04.12310.1016/j.energy.2017.04.123
  6. [6] Sennova E. V., et al. Reliability of heat supply systems. Novosibirsk: Nauka, 2000.
  7. [7] Lisnianski A., Elmakias D., Hanoch B. H. A multi-state Markov model for a short-term reliability analysis of a power generating unit. Reliability engineering & system safety 2012:98:1–6. https://doi.org/10.1016/j.ress.2011.10.00810.1016/j.ress.2011.10.008
  8. [8] Shahhosseini A., Olamaei J. An efficient stochastic programming for optimal allocation of combined heat and power systems for commercial buildings using. Thermal Science and Engineering Progress 2019:11:133–141. https://doi.org/10.1016/j.tsep.2019.03.01610.1016/j.tsep.2019.03.016
  9. [9] Haghifam M., Manbachi M. Reliability and availability modelling of combined heat and power (CHP) systems. International journal of electrical power & energy systems 2011:33(3):385–393. https://doi.org/10.1016/j.ijepes.2010.08.03510.1016/j.ijepes.2010.08.035
  10. [10] Sabouhi H., Abbaspour A., Fotuhi-Firuzabad M., Dehghanian P. Reliability modeling and availability analysis of combined cycle power plants. International Journal of Electrical Power & Energy Systems 2016:79:108–119. https://doi.org/10.1016/j.ijepes.2016.01.00710.1016/j.ijepes.2016.01.007
  11. [11] Kumar P., Kumar Singh L., Kumar C. Performance evaluation of safety-critical systems of nuclear power plant systems. Nuclear Engineering and Technology 2020:52(3):560–67. https://doi.org/10.1016/j.net.2019.08.01810.1016/j.net.2019.08.018
  12. [12] Jiang J., Zhang L., Wang Y., Peng Y., Zhang K., He W. Markov reliability model research of monitoring process in digital main control room of nuclear power plant. Safety Science 2011:49(6):843–851. https://doi.org/10.1016/j.ssci.2011.01.01410.1016/j.ssci.2011.01.014
  13. [13] Wang J.-J., Fu C., Yang K., Zhang X.-T., Shi G., Zhai J. Reliability and availability analysis of redundant BCHP (building cooling, heating and power) system. Energy 2013:61:531–40. https://doi.org/10.1016/j.energy.2013.09.01810.1016/j.energy.2013.09.018
  14. [14] El-Nashar A. Optimal design of a cogeneration plant for power and desalination taking equipment reliability into consideration. Desalination 2008:229(1–3):21–32. https://doi.org/10.1016/j.desal.2007.07.02410.1016/j.desal.2007.07.024
  15. [15] Woo S., Nam Z. Semi-Markov reliability analysis of three test/repair policies for standby safety systems in a nuclear power plant. Reliability engineering & system safety 1991:31:1–30. https://doi.org/10.1016/0951-8320(91)90033-410.1016/0951-8320(91)90033-4
  16. [16] Korolyuk V. S., Turbin A. F. Semi-Markov processes and their applications. Kiev: Naukova Dumka, 1976.
  17. [17] Jiang J., Gao W., Wei X., Li Y., Kuroki S. Reliability and cost analysis of the redundant design of a combined cooling, heating and power (CCHP) system. Energy Conversion and Management 2019:199:111988. https://doi.org/10.1016/j.enconman.2019.11198810.1016/j.enconman.2019.111988
  18. [18] Wang J., You S., Zong Y., Chresten T., Dong Z. Y., Zhou Y. Flexibility of combined heat and power plants: A review of technologies and operation strategies. Applied Energy 2019:252:113445. https://doi.org/10.1016/j.apenergy.2019.11344510.1016/j.apenergy.2019.113445
  19. [19] Frangopoulos C. A., Dimopoulos G. G. Effect of reliability considerations on the optimal synthesis, design and operation of a cogeneration system. Energy 2004:29(3):309–329. https://doi.org/10.1016/S0360-5442(02)00031-210.1016/S0360-5442(02)00031-2
  20. [20] Buslenko N. P. Modeling of complex systems. Moscow: Nauka, 1978.
  21. [21] Shu L, Chen L., Jin J., Yu J., Sun F., Wu C. Functional reliability simulation for a power-station’s steam-turbine. Applied Energy 2005:80(1):61–66. https://doi.org/10.1016/j.apenergy.2004.02.00410.1016/j.apenergy.2004.02.004
  22. [22] Ahn H., Rim D., Pavlak G. S., Freihaut J. D. Uncertainty analysis of energy and economic performances of hybrid solar photovoltaic and combined cooling, heating, and power (CCHP+PV) systems using a Monte-Carlo method. Applied Energy 2019:255:113753. https://doi.org/10.1016/j.apenergy.2019.11375310.1016/j.apenergy.2019.113753
  23. [23] Khasilev V. Y., Takaishvili M. K. About fundamentals of the technique for calculation and redundancy of heat networks. Teploenergetika 1972:4:14–19.
  24. [24] Sennova E. V., Sidler V. G. Mathematical modeling and optimization of developing heat supply systems. Novosibirsk: Nauka, 1985.
  25. [25] Stennikov V. A., Postnikov I. V. Methodological support for a comprehensive analysis of fuel and heat supply reliability. In: Sustaining power resources through energy optimization and engineering, ed. by Vasant P., Voropai N. I. Hershey PA: Engineering science reference (an imprint of IGI Global), 2016. https://doi.org/10.4018/978-1-4666-9755-310.4018/978-1-4666-9755-3
  26. [26] Diakov A. F., et al. Reliability of energy systems: problems, models and methods for solving them. Novosibirsk: Nauka, 2014.
  27. [27] Merenkov A. P., Khasilev V. Ya. Theory of hydraulic circuits. Moscow: Nauka, 1985.
  28. [28] Ionin A. A. Reliability of heat network systems. Moscow: Strojizdat, 1989.
  29. [29] Valincius M., Zutautaite I., Dundulis G., Rimkevicius S., Janulionis R., Bakas R. Integrated assessment of failure probability of the district heating network. Reliability Engineering and System Safety 2015:133:314–322. https://doi.org/10.1016/j.ress.2014.09.02210.1016/j.ress.2014.09.022
  30. [30] Zorkaltsev V. I., Kolobov Y. I. A simulation model to study reliability of fuel supply to heat generating units. Bulletin of Komi branch of the USSR Academy of Sciences 1984:33–39.
  31. [31] Nekrasov A. S., Velikanov M. A., Gorunov P. V. Reliability of fuel supply to power plants: methods and models of studies. Moscow: Nauka, 1990,
  32. [32] Zorkaltsev V., Ivanova E. Intensity and synchronism of fluctuations in fuel demand for heating by economic region of the country. Bulletin of the USSR Academy of Sciences: Energy and transport 1990:6:14–22.
  33. [33] Sukharev M. G., et al. Reliability of gas and oil supply systems. Moscow: Nedra, 1994.
  34. [34] Rimkevicius S., Kaliatka A., Valincius M., Dundulis G., Janulionis R., Grybenas A., Zutautaite I. Development of approach for reliability assessment of pipeline network systems. Applied Energy 2012:94:22–33. https://doi.org/10.1016/j.apenergy.2012.01.01510.1016/j.apenergy.2012.01.015
  35. [35] Amirat A., Mohamed-Chateauneuf A., Chaoui K. Reliability assessment of underground pipelines under the combined effect of active corrosion and residual stress. International Journal of Pressure Vessels and Piping 2006:83(2):107–117. https://doi.org/10.1016/j.ijpvp.2005.11.00410.1016/j.ijpvp.2005.11.004
  36. [36] Adefarati T., Bansal R. C. Reliability assessment of distribution system with the integration of renewable distributed generation. Applied Energy 2017:185:158–171. https://doi.org/10.1016/j.apenergy.2016.10.08710.1016/j.apenergy.2016.10.087
  37. [37] Ramirez-Marquez J. E., Coit D. W. Multi-state component criticality analysis for reliability improvement in multi-state systems. Reliability Engineering and System Safety 2007:92:1608–1619. https://doi.org/10.1016/j.ress.2006.09.01410.1016/j.ress.2006.09.014
  38. [38] Stennikov V. A., Postnikov I. V. Methods for the integrated reliability analysis of heat supply. Power Technology and Engineering 2014:47(6):446–453. https://doi.org/10.1007/s10749-014-0467-010.1007/s10749-014-0467-0
  39. [39] Stennikov V. A., Postnikov I. V. Methods for comprehensive analysis of heat supply reliability. International journal of energy optimization and engineering 2013:2(4):120–142. https://doi.org/10.4018/ijeoe.201310010710.4018/ijeoe.2013100107
  40. [40] Stennikov V. A., Postnikov I. V. Comprehensive analysis of the heat supply reliability. Bulletin of Russian Academy of Sciences: Energy 2011:2:107–121.
  41. [41] Bukher F. S., et al. Study of operating modes and a feasibility study for the reconstruction of heating networks in the Shelekhov city taking into account the forecasting loads. Report on research work. Irkutsk: ESI SB RAS, 2008.
  42. [42] Sanitary regulations SNiP 23-01-99 “Construction climatology”. Moscow: State Committee of the Russian Federation for construction and housing and communal services, 2000.
  43. [43] Postnikov I., Stennikov V., Mednikova E., Penkovskii A. A methodology for optimization of component reliability of heat supply systems. Energy Procedia 2017:105:3083–3088. https://doi.org/10.1016/j.egypro.2017.03.64310.1016/j.egypro.2017.03.643
  44. [44] Postnikov I., Stennikov V., Mednikova E., Penkovskii A. Methodology for optimization of component reliability of heat supply systems. Applied Energy 2018:227:365–374. https://doi.org/10.1016/j.apenergy.2017.11.07310.1016/j.apenergy.2017.11.073
  45. [45] Postnikov I., Stennikov V., Penkovskii A. Prosumer in the district heating systems: Operating and reliability modeling. Energy Procedia 2019:158:2530–2535. https://doi.org/10.1016/j.egypro.2019.01.41110.1016/j.egypro.2019.01.411
  46. [46] Postnikov I. Methods for optimization of time redundancy of prosumer in district heating systems. Energy Reports 2020:6(2):214–220. https://doi.org/10.1016/j.egyr.2019.11.06510.1016/j.egyr.2019.11.065
  47. [47] Postnikov I. Providing the Reliability of Heating of Prosumers taking into account the Functioning of Their Own Heat Sources in District Heating Systems. IEEE Xplore Digital Library 2019 (International Multi-Conference on Industrial Engineering and Modern Technologies – FarEastCon):1–7. https://doi.org/10.1109/FarEastCon.2019.893491310.1109/FarEastCon.2019.8934913
DOI: https://doi.org/10.2478/rtuect-2020-0093 | Journal eISSN: 2255-8837 | Journal ISSN: 1691-5208
Language: English
Page range: 145 - 162
Published on: Dec 14, 2020
Published by: Riga Technical University
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2020 Ivan Postnikov, published by Riga Technical University
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.