Have a personal or library account? Click to login
Assessing the Performance Gap of Climate Change on Buildings Design Analytical Stages Using Future Weather Projections Cover

Assessing the Performance Gap of Climate Change on Buildings Design Analytical Stages Using Future Weather Projections

Open Access
|Dec 2020

References

  1. [1] Frank T. H. Climate change impacts on building heating and cooling energy demand in Switzerland. Energy and Buildings 2005:37(11):1175–1185. https://doi.org/10.1016/j.enbuild.2005.06.01910.1016/j.enbuild.2005.06.019
  2. [2] World Meteorological Organisation. [Online]. [Accessed 17.02.2020]. Available: https://public.wmo.int/en
  3. [3] Olonscheck M., Holsten A., Kropp J. P. Heating and cooling energy demand and related emissions of the German residential building stock under climate change. Energy Policy 2011:39(9):4795–4806. https://doi.org/10.1016/j.enpol.2011.06.04110.1016/j.enpol.2011.06.041
  4. [4] IPCC Special Report on Emissions Scenarios (SRES): Summary for policymakers—A special report of IPCC working group III intergovernmental panel on climate change. Geneva, Switzerland: IPCC, 2000.
  5. [5] Chow D. H. C., Levermore G. New algorithm for generating hourly temperature values using daily maximum, minimum and average values from climate models. Building Services Engineering Research and Technology 2007:28:3:237–248. https://doi.org/10.1177/014362440707864210.1177/0143624407078642
  6. [6] Belcher S. E., Hacker J. N., Powell D. S. Constructing design weather data for future climates. Building Services Engineering Research and Technology 2005:26(1):49–61. https://doi.org/10.1191/0143624405bt112oa10.1191/0143624405bt112oa
  7. [7] Jentsch M. F., Bahaj A. S., James P. A. B. Climate change future proofing of buildings—Generation and assessment of building simulation weather files. Energy and Buildings 2008:40(12):2148–2168. https://doi.org/10.1016/j.enbuild.2008.06.00510.1016/j.enbuild.2008.06.005
  8. [8] Jentsch M. F., et al. Transforming existing weather data for worldwide locations to enable energy and building performance simulation under future climates. Renewable Energy 2013:55: 514–524. https://doi.org/10.1016/j.renene.2012.12.04910.1016/j.renene.2012.12.049
  9. [9] Sabunas A., Kanapickas A. Estimation of climate change impact on energy consumption in a residential building in Kaunas, Lithuania, using HEED software. Energy Procedia 2017:128:92–99. https://doi.org/10.1016/j.egypro.2017.09.02010.1016/j.egypro.2017.09.020
  10. [10] Arima Y., et al. Effect of climate change on building cooling loads in Tokyo in the summers of the 2030s using dynamically downscaled GCM data. Energy and Buildings 2016:114:123–129. https://doi.org/10.1016/j.enbuild.2015.08.01910.1016/j.enbuild.2015.08.019
  11. [11] Kikumoto H., et al. Study on the future weather data considering the global and local climate change for building energy simulation. Sustainable Cities and Society 2014:14:404–413. https://doi.org/10.1016/j.scs.2014.08.00710.1016/j.scs.2014.08.007
  12. [12] Wan K. K. W., et al. Impact of climate change on building energy use in different climate zones and mitigation and adaptation implications. Applied Energy 2012:97:274–282. https://doi.org/10.1016/j.apenergy.2011.11.04810.1016/j.apenergy.2011.11.048
  13. [13] Zhu M., et al. An alternative method to predict future weather data for building energy demand simulation under global climate change. Energy and Buildings 2016:113:74–86. https://doi.org/10.1016/j.enbuild.2015.12.02010.1016/j.enbuild.2015.12.020
  14. [14] Huang J., Gurney K. R. The variation of climate change impact on building energy consumption to building type and spatiotemporal scale. Energy 2016:111:137–153. https://doi.org/10.1016/j.energy.2016.05.11810.1016/j.energy.2016.05.118
  15. [15] The World Climate Research Programme (2019). The World Climate Research Programme’s (WCRP’s) coupled model intercomparison project phase 3 (CMIP3) multi-model dataset. [Online]. [Accessed 17.02.2020]. Available: https://gdo.dcp.ucllnl.org/downscaledcmip_projections/n.d
  16. [16] Wang X., et al. Assessment of climate change impact on residential building heating and cooling energy requirement in Australia. Building and Environment 2010:45(7):1663–1682. https://doi.org/10.1016/j.buildenv.2010.01.02210.1016/j.buildenv.2010.01.022
  17. [17] Jiang A., et al. Hourly weather data projection due to climate change for impact assessment on building and infrastructure. Sustainable Cities and Society 2019:50:101688. https://doi.org/10.1016/j.scs.2019.10168810.1016/j.scs.2019.101688
  18. [18] University of North Florida, Department of Construction Management. Weather Morph: Climate Change Weather File Generator. [Online]. [Accessed 17.02.2020]. Available: http://139.62.210.131/weatherGen/
  19. [19] Swiss Federal Office of Meteorology and Climatology. [Online]. [Accessed 17.02.2020]. Available: https://www.meteoswiss.admin.ch/home/climate/climate-change-in-switzerland/climate-change-scenarios.html
  20. [20] Takashi T. S., et al. MIROC4h—A new high-resolution atmosphere-ocean coupled general circulation model. Journal of the Meteorological Society of Japan 2012:90:3:325–359. https://doi.org/10.2151/jmsj.2012-30110.2151/jmsj.2012-301
  21. [21] Intergovernmental Panel on Climate Change (IPCC). [Online]. [Accessed 20.08.2020]. Available: https://www.ipcc.ch/data/
  22. [22] Jimenez-Bescos C., Oregi X. Implementing User Behaviour on Dynamic Building Simulations for Energy Consumption. Environmental and Climate Technologies 2019:23(3):308–318. https://doi.org/10.2478/rtuect-2019-009710.2478/rtuect-2019-0097
  23. [23] Albatayneh A., et al. The Significance of Building Design for the Climate. Environmental and Climate Technologies 2018:22(1):165–178. https://doi.org/10.2478/rtuect-2018-001110.2478/rtuect-2018-0011
  24. [24] Rucevskissandris S., Akishin P., Korjakins A. Performance Evaluation of an Active PCM Thermal Energy Storage System for Space Cooling in Residential Buildings. Environmental and Climate Technologies 2019:23(2):165–178. https://doi.org/10.2478/rtuect-2019-005610.2478/rtuect-2019-0056
  25. [25] Szokolay S. V. Heat: the thermal environment, Introduction to Architectural Science: The Basis of Sustainable Design. Second edition. Linacre House, Oxford, 2008.10.4324/9780080878942
  26. [26] Olgyay V. Design with Climate: Bioclimatic Approach to Architectural Regionalism. Princeton University Press, 2015.10.2307/j.ctvc77kqb
  27. [27] Ogunsote O. O., Prucnal-Ogunsote, B. Comfort Limits for the Effective Temperature Index in the Tropics: A Nigerian Case Study. Architectural Science Review 2002:45(2):125–132. https://doi.org/10.1080/00038628.2002.969750010.1080/00038628.2002.9697500
  28. [28] Choudhury P. K., et al. Datta, Improving Thermal Comfort in Clothing, Woodhead Publishing Series in Textiles, 2011.
  29. [29] NASA GLOBAL Climate Change: Vital Signs of the Planet., Arctic Sea Ice Minimum. [Online]. [Accessed 22.02.2020]. Available: https://climate.nasa.gov/vital-signs/arctic-sea-ice/
DOI: https://doi.org/10.2478/rtuect-2020-0091 | Journal eISSN: 2255-8837 | Journal ISSN: 1691-5208
Language: English
Page range: 119 - 134
Published on: Dec 14, 2020
Published by: Riga Technical University
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2020 Ibrahim Alhindawi, Carlos Jimenez-Bescos, published by Riga Technical University
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.