Have a personal or library account? Click to login
The Effect of the Carbon Tax Value on the Optimal Parameters and Characteristics of Coal Power Plants Cover

The Effect of the Carbon Tax Value on the Optimal Parameters and Characteristics of Coal Power Plants

Open Access
|Dec 2020

References

  1. [1] Kanniche M., Moullec Y. L., Authier O., Hagi H., Bontemps D., Neveux T., Louis-Louisy M. Up-to-date CO2 capture in thermal power plants. Energy Procedia 2017:114:95–103. https://doi.org/10.1016/j.egypro.2017.03.115210.1016/j.egypro.2017.03.1152
  2. [2] Gravelsins A., Bazbauers G., Blumberga A., Blumberga D. Power Sector Flexibility through Power-to-Heat and Power-to-Gas Application – System Dynamics Approach. Environmental and Climate Technologies 2019:23(3):319–332. https://doi.org/10.2478/rtuect-2019-009810.2478/rtuect-2019-0098
  3. [3] Blumberga D., Chen B., Ozarska A., Indzere Z., Lauka D. Energy, Bioeconomy, Climate Changes and Environment Nexus. Environmental and Climate Technologies 2019:23(3):370–392. https://doi.org/10.2478/rtuect-2019-010210.2478/rtuect-2019-0102
  4. [4] Locatelli G., Mancini M. Small–medium sized nuclear coal and gas power plant: A probabilistic analysis of their financial performances and influence of CO2 cost. Energy Policy 2010:38(10):6360–6374. https://doi.org/10.1016/j.enpol.2010.06.02710.1016/j.enpol.2010.06.027
  5. [5] Supekar S. D., Skerlos S. J. Reassessing the Efficiency Penalty from Carbon Capture in Coal-Fired Power Plants. Environmental Science & Technology 2015:49(20):12576–12584. https://doi.org/10.1021/acs.est.5b0305210.1021/acs.est.5b03052
  6. [6] Siefert N. S., Litster S. Exergy and economic analyses of advanced IGCC–CCS and IGFC–CCS power plants. Applied Energy 2013:107:315–328. https://doi.org/10.1016/j.apenergy.2013.02.00610.1016/j.apenergy.2013.02.006
  7. [7] Bohm M. C., Herzog H. J., Parsons J. E., Sekar R. C. Capture-ready coal plants – Options, technologies and economics. International J. Greenhouse Gas Control 2007:1(1):113–120. https://doi.org/10.1016/S1750-5836(07)00033-310.1016/S1750-5836(07)00033-3
  8. [8] Pettinau A., Ferrara F., Tola V., Cau G. Techno-economic comparison between different technologies for CO2 -free power generation from coal. Applied Energy 2017:193 :426–439. https://doi.org/10.1016/j.apenergy.2017.02.05610.1016/j.apenergy.2017.02.056
  9. [9] Meneses L. R., Silva J. C., Cota S., Kikas T. Thermodynamic, Environmental and Economic Simulation of an Organic Rankine Cycle (ORC) for Waste Heat Recovery: Terceira Island Case Study. Environmental and Climate Technologies 2019:23(2):347–365. https://doi.org/10.2478/rtuect-2019-007310.2478/rtuect-2019-0073
  10. [10] Kler A. M., Zharkov P. V., Epishkin N. O. Parametric optimization of supercritical power plants using gradient methods. Energy 2019:189:116230. https://doi.org/10.1016/j.energy.2019.11623010.1016/j.energy.2019.116230
  11. [11] Kler A. M., Potanina Y. M., Marinchenko A. Y. Co-optimization of thermal power plant flowchart, thermodynamic cycle parameters, and design parameters of components. Energy 2020:193:116679. https://doi.org/10.1016/j.energy.2019.11667910.1016/j.energy.2019.116679
DOI: https://doi.org/10.2478/rtuect-2020-0089 | Journal eISSN: 2255-8837 | Journal ISSN: 1691-5208
Language: English
Page range: 104 - 111
Published on: Dec 14, 2020
Published by: Riga Technical University
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2020 Alexander Kler, Pavel Zharkov, Yulia Potanina, Andrey Marinchenko, Nikolai Epishkin, published by Riga Technical University
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.