Have a personal or library account? Click to login
The effect of the District Heating Return Temperature Reduction on Flue Gas Condenser Efficiency Cover

The effect of the District Heating Return Temperature Reduction on Flue Gas Condenser Efficiency

Open Access
|Dec 2020

References

  1. [1] European Parliament Council of the European Union. Directive 2012/27/EU of the European Parliament and of the Council of 25 October 2012 on energy efficiency, amending Directives 2009/125/EC and 2010/30/EU and repealing Directives 2004/8/EC and 2006/32/EC Text with EEA relevance. Official journal of the European Union 2012:L 315/1.
  2. [2] European Parliament Council of the European Union. Directive 2012/27/EU of the European Parliament and of the Council of 25 October 2012. Official journal of the European Union. https://doi:10.3000/19770677.L_2012.315.eng
  3. [3] Volkova A., Mašatin V., Siirde A. Methodology for evaluating the transition process dynamics towards 4th generation district heating networks. Energy 2018:150:253–261. https://doi.org/10.1016/j.energy.2018.02.12310.1016/j.energy.2018.02.123
  4. [4] Köfinger M., Basciotti D., Schmidt R. R. Reduction of return temperatures in urban district heating systems by the implementation of energy-cascades. Energy Procedia 2017:116:438-451. https://doi.org/10.1016/j.egypro.2017.05.09110.1016/j.egypro.2017.05.091
  5. [5] Feofilovs M., Pakere I., Romagnoli F. Life Cycle Assessment of Different Low-Temperature District Heating Development Scenarios: A Case Study of Municipality in Latvia. Environmental and Climate Technologies 2019:23(2):272–290. https://doi.org/10.2478/rtuect-2019-006810.2478/rtuect-2019-0068
  6. [6] Pakere I., Blumberga D. Solar Energy in Low Temperature District Heating. Environmental and Climate Technologies 2019:23(3):147–158. https://doi.org/10.2478/rtuect-2019-008510.2478/rtuect-2019-0085
  7. [7] Polikarpova I., Lauka D., Blumberga D., Vigants E. Multi - Criteria Analysis to Select Renewable Energy Solution for District Heating System. Environmental and Climate Technologies 2019:23(3):101–109. https://doi.org/10.2478/rtuect-2019-008210.2478/rtuect-2019-0082
  8. [8] Pieper H., Volkova A., Mašatin V. Large-scale heat pump integration model: A case study of Tallinn district heating. 4th Int. Conf. Smart Energy Syst. 4th Gener. Dist. Heating, Aalborg, Denmark, 2018.
  9. [9] Nardecchia F., et al. An alternative tool for the energy evaluation and the management of thermal networks: The exergy analysis. EEEIC 2016:1–6. https://doi.org/10.1109/EEEIC.2016.755564510.1109/EEEIC.2016.7555645
  10. [10] Karkaba H., Habchi C., Al Takash A. Numerical Analysis of Different Indoor Heating Methods. Proceeding of the 4th International Conference Advanced Computer Tools Engineering Applications (ACTEA) 2019:1–7. https://doi.org/10.1109/ACTEA.2019.885107510.1109/ACTEA.2019.8851075
  11. [11] Guelpa E., Marincioni L. Demand side management in district heating systems by innovative control. Energy 2019:188:116037. https://doi.org/10.1016/j.energy.2019.11603710.1016/j.energy.2019.116037
  12. [12] Latõšov E., et al. The Impact of Parallel Energy Consumption on the District Heating Networks. Environmental and Climate Technologies 2019:23(1):1–13. https://doi.org/10.2478/rtuect-2019-000110.2478/rtuect-2019-0001
  13. [13] Brand M., Svendsen S. Renewable-based low-temperature district heating for existing buildings in various stages of refurbishment. Energy 2013:62:311–319. https://doi.org/10.1016/j.energy.2013.09.02710.1016/j.energy.2013.09.027
  14. [14] Volkova A., et al. Energy cascade connection of a low-temperature district heating network to the return line of a high-temperature district heating network. Energy 2020:198:117304. https://doi.org/10.1016/j.energy.2020.11730410.1016/j.energy.2020.117304
  15. [15] Ziemele J., et al. Sustainability of heat energy tariff in district heating system: Statistic and dynamic methodologies. Energy 2017:137:834–845. https://doi.org/10.1016/j.energy.2017.04.13010.1016/j.energy.2017.04.130
  16. [16] Galindo Fernández M., et al. Efficient district heating and cooling systems in the EU Case studies analysis, replicable key success factors and potential policy implications. Luxembourg: Publications Office of the European Union, 2016. https://doi.org/10.2760/371045
  17. [17] AS Narva Soojusvõrk. Technical report. 2019.
  18. [18] Blumberga D., et al. Empirical Model of Cost Reduction in Local DH Systems Low Temperature Approach. Environmental and Climate Technologies 2019:23(3):190–201. https://doi.org/10.2478/rtuect-2019-008910.2478/rtuect-2019-0089
  19. [19] Vigants G., et al. Cost Analysis of a Wood Chip Boiler House with a Gas Condenser. Energy Procedia 2015:75:1214–1220. https://doi.org/10.1016/j.egypro.2015.07.15910.1016/j.egypro.2015.07.159
  20. [20] Priedniece V., et al. Experimental and analytical study of the flue gas condenser - fog unit. Energy Procedia 2019:158:822–827. https://doi.org/10.1016/j.egypro.2019.01.21510.1016/j.egypro.2019.01.215
  21. [21] Soleimanikutanaei S., Lin C.X., Wang D. Numerical modeling and analysis of Transport Membrane Condensers for waste heat and water recovery from flue gas. International Journal of Thermal Sciences 2019:136:96–106. https://doi.org/10.1016/j.ijthermalsci.2018.10.01410.1016/j.ijthermalsci.2018.10.014
  22. [22] Vannoni A., Sorce A., Bosser S., Buddenberg T. Heat recovery from Combined Cycle Power Plants for Heat Pumps. E3S Web Conference 2019:113:1–9. https://doi.org/10.1051/e3sconf/20191130101110.1051/e3sconf/201911301011
  23. [23] Striūgas N., et al. Estimating the fuel moisture content to control the reciprocating grate furnace firing wet woody biomass. Energy Conversion Management 2017:149:937–949. https://doi.org/10.1016/j.enconman.2017.04.01410.1016/j.enconman.2017.04.014
  24. [24] Paraschiv L. S., Serban A., Paraschiv S. Calculation of combustion air required for burning solid fuels (coal / biomass / solid waste) and analysis of flue gas composition. Energy Reports 2019:6:36–45. https://doi.org/10.1016/j.egyr.2019.10.01610.1016/j.egyr.2019.10.016
  25. [25] European Standards, DIN EN 12952-15:2003. Water-tube boilers and auxiliary installations - Part 15: Acceptance tests. 2003.
  26. [26] Li P.W., Chyang C.S. A comprehensive study on NOx emission and fuel nitrogen conversion of solid biomass in bubbling fluidized beds under staged combustion. Journal of the Energy Institute 2019:93:324–334. https://doi.org/10.1016/j.joei.2019.02.00710.1016/j.joei.2019.02.007
  27. [27] Kuznetsov G. V., et al. Mechanism of Sulfur and Nitrogen Oxides Suppression in Combustion Products of Mixed Fuels Based on Coal and Wood. Combustion Science and Technology 2019:191(11):2071–2081. https://doi.org/10.1080/00102202.2018.154328510.1080/00102202.2018.1543285
  28. [28] Blumberga D., Vigants E., Veidenbergs I. Analysis of flue gas condenser operation. Latvian Journal of Physics and Technical Science 2011:48(4):58–65. https://doi.org/10.2478/v10047-011-0028-310.2478/v10047-011-0028-3
  29. [29] Colburn A. P., Hougen O. A. Design of Cooler Condensers for Mixtures of Vapors with Noncondensing Gases. Industrial Engineering and Chemistry 1934:26:1178–1182. https://doi.org/10.1021/ie50299a01110.1021/ie50299a011
  30. [30] Jia L., et al. Effects of water vapor condensation on the convection heat transfer of wet flue gas in a vertical tube. Int. J. Heat & Mass Transfer 2001:44(22):4257–4265. https://doi.org/10.1016/S0017-9310(01)00082-510.1016/S0017-9310(01)00082-5
  31. [31] Jeong K., et al. J., Analytical modeling of water condensation in condensing heat exchanger. International Journal of Heat and Mass Transfer 2010:53(11–12):2361–2368. https://doi.org/10.1016/j.ijheatmasstransfer.2010.02.00410.1016/j.ijheatmasstransfer.2010.02.004
  32. [32] Käär H., et al. Soojus- ja massilevi. I osa. Põhikursus. (Heat and mass transfer. Part I. Basic course.) Tallinn: Tallinn University of Technology, 1998. (in Estonian)
  33. [33] Poobus A., Tiikma T. Soojus- ja massilevi II. (Heat and mass transfer. Part II.) Tallinn: Tallinn University of Technology, 2000.
DOI: https://doi.org/10.2478/rtuect-2020-0083 | Journal eISSN: 2255-8837 | Journal ISSN: 1691-5208
Language: English
Page range: 23 - 38
Published on: Dec 14, 2020
Published by: Riga Technical University
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2020 Kertu Lepiksaar, Anna Volkova, Pavel Ruseljuk, Andres Siirde, published by Riga Technical University
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.