Have a personal or library account? Click to login
The Effectiveness of Infiltration against Roof Insulation aimed at Low Income Housing Retrofits for Different Climate Zones in Jordan Cover

The Effectiveness of Infiltration against Roof Insulation aimed at Low Income Housing Retrofits for Different Climate Zones in Jordan

Open Access
|Dec 2020

References

  1. [1] United State Departament of Energy. 2011 Buildings Energy Data Book [Online]. [Accessed 06.01.2020]. Available: https://ieer.org/wp/wp-content/uploads/2012/03/DOE-2011-Buildings-Energy-DataBook-BEDB.pdf
  2. [2] Europa Union. EU Energy in Figures Statistical Pocketbook 2019. [Online]. [Accessed 06.01.2020]. Available: https://op.europa.eu/en/publication-detail/-/publication/e0544b72-db53-11e9-9c4e-01aa75ed71a1
  3. [3] Ministry of Energy and Mineral Resources, Energy 2019 – Facts & Figures. 2019. [Online]. [Accessed 06.01.2020]. Available: https://www.memr.gov.jo/EchoBusV3.0/SystemAssets/PDFs/EN/BroshorEn2019.pdf
  4. [4] Bolattürk A. Optimum insulation thicknesses for building walls with respect to cooling and heating degree-hours in the warmest zone of Turkey. Building and environment 2008:43(6):1055–1064. https://doi.org/10.1016/j.buildenv.2007.02.01410.1016/j.buildenv.2007.02.014
  5. [5] Gentle A. R., Aguilar J. L. C., Smith G. B. Optimized cool roofs: Integrating albedo and thermal emittance with R-value. Solar Energy Materials and Solar Cells 2011:95(12):3207–3215. https://doi.org/10.1016/j.solmat.2011.07.01810.1016/j.solmat.2011.07.018
  6. [6] Shi Z., Zhang X. Analyzing the effect of the longwave emissivity and solar reflectance of building envelopes on energy-saving in buildings in various climates. Solar Energy 2011:85(1):28–37. https://doi.org/10.1016/j.solener.2010.11.00910.1016/j.solener.2010.11.009
  7. [7] Chen J., Peng Z., Yang P. P. J. The Energy Performance Evaluation of Roof Retrofit Under Uncertainties for the Shanghai’s Worker Village. Energy Procedia 2019:158:3170–3176. https://doi.org/10.1016/j.egypro.2019.01.102010.1016/j.egypro.2019.01.1020
  8. [8] Fantucci S., Serra V. Investigating the performance of reflective insulation and low emissivity paints for the energy retrofit of roof attics. Energy Buildings 2019:182:300–310. https://doi.org/10.1016/j.enbuild.2018.10.00310.1016/j.enbuild.2018.10.003
  9. [9] Nowak H. The longwave radiative heat transfer of the building envelopes. Infrared physics 1991:32:357–363. https://doi.org/10.1016/0020-0891(91)90124-X10.1016/0020-0891(91)90124-X
  10. [10] Chwieduk D. A. Recommendation on modelling of solar energy incident on a building envelope. Renewable Energy 2009:34(3):736–741. https://doi.org/10.1016/j.renene.2008.04.00510.1016/j.renene.2008.04.005
  11. [11] Kaşka Ö., Yumrutaş R. Experimental investigation for total equivalent temperature difference (TETD) values of building walls and flat roofs. Energy Conversion Management 2009:50(11):2818–2825. https://doi.org/10.1016/j.enconman.2009.06.02710.1016/j.enconman.2009.06.027
  12. [12] Toguyeni D. Y., et al. Rousse, and Buildings. Study of the influence of roof insulation involving local materials on cooling loads of houses built of clay and straw. Energy Buildings 2012:50:74–80. https://doi.org/10.1016/j.enbuild.2012.03.02110.1016/j.enbuild.2012.03.021
  13. [13] Emmel M. G., Abadie M. O., Mendes N. J. E. New external convective heat transfer coefficient correlations for isolated low-rise buildings. Energy Buildings 2007:39:3:335–342. https://doi.org/10.1016/j.enbuild.2006.08.00110.1016/j.enbuild.2006.08.001
  14. [14] Palyvos J. A. A survey of wind convection coefficient correlations for building envelope energy systems’ modeling. Applied Thermal Engineering 2008:28(8–9):801–808. https://doi.org/10.1016/j.applthermaleng.2007.12.00510.1016/j.applthermaleng.2007.12.005
  15. [15] Orme M. J. E. Estimates of the energy impact of ventilation and associated financial expenditures. Energy Buildings 2001:33(3):199–205. https://doi.org/10.1016/S0378-7788(00)00082-710.1016/S0378-7788(00)00082-7
  16. [16] Aurlien T. Performing intermediate checks and early-stage testing of airtightness. REHVA Journal 2013:01:15.
  17. [17] Thomsen K. E., Rose J., Aggerholm S. The final recommendations of the ASIEPI project: How to make EPB-regulations more effective? ASIEPI, 2010.
  18. [18] Almarzouq A. Sakhrieh A. Effects of glazing design and infiltration rate on energy consumption and thermal comfort in residential buildings. Thermal science 2019:23(5B):2951–2960. https://doi.org/10.2298/TSCI170910073A10.2298/TSCI170910073A
  19. [19] Albatayneh A., et al. Warming Issues Associated with The Long Term Simulation of Housing Using CFD Analysis. Journal of Green Building 2016:1(2):57–74. https://doi.org/10.3992/jgb.11.2.57.110.3992/jgb.11.2.57.1
  20. [20] Albatayneh A., Alterman D., Page A. Adaptation the Use of CFD Modelling for Building Thermal Simulation. Proceedings of the 2018 International Conference on Software Engineering and Information Management 2018:68–72. https://doi.org/10.1145/3178461.317846610.1145/3178461.3178466
  21. [21] Albatayneh A., et al. The Significance of Time Step Size in Simulating the Thermal Performance of Buildings. Advances in Research 2015:5(6):1–12. https://doi.org/10.9734/AIR/2015/2022310.9734/AIR/2015/20223
  22. [22] Albatayneh A., et al. Discrepancies in Peak Temperature Times using Prolonged CFD Simulations of Housing Thermal Performance. Energy Procedia 2017:115:253–264. https://doi.org/10.1016/j.egypro.2017.05.02310.1016/j.egypro.2017.05.023
  23. [23] Albatayneh A., et al. An Alternative Approach to the Simulation of Wind Effects on the Thermal Performance of Buildings. International Journal of Computational Physics 2018:1:35–44. https://doi.org/10.29167/A1I1P35-4410.29167/A1I1P35-44
  24. [24] Hassouneh K., Al-Salaymeh A., Qoussous J. Energy audit, an approach to apply the concept of green building for a building in Jordan. Sustainable Cities Society 2015:14:456–462. https://doi.org/10.1016/j.scs.2014.08.01010.1016/j.scs.2014.08.010
  25. [25] Ali H. H., Al Nsairat S. F. Developing a green building assessment tool for developing countries–Case of Jordan. Building environment 2009:44(5):1053–1064. https://doi.org/10.1016/j.buildenv.2008.07.01510.1016/j.buildenv.2008.07.015
  26. [26] Alshorman A. A., et al. Validation of Jordanian Green Building Based on LEED Standard for Energy Efficiency Methodology. Jordan Journal of Mechanical Industrial Engineering 2018:12(1).
  27. [27] Albatayneh A., et al. Development of a new metric to characterise the buildings thermal performance in a temperate climate. Energy for Sustainable Development 2019:51:1–2. https://doi.org/10.1016/j.esd.2019.04.00210.1016/j.esd.2019.04.002
  28. [28] Albatayneh A., et al. The Significance of the Adaptive Thermal Comfort Limits on the Air-Conditioning Loads in a Temperate Climate. Sustainability 2019:11(2):328. https://doi.org/10.3390/su1102032810.3390/su11020328
  29. [29] Albatayneh A., et al. The Significance of Building Design for the Climate. Environmental and Climate Technologies 2018:22:165–178 https://doi.org/10.2478/rtuect-2018-001110.2478/rtuect-2018-0011
  30. [30] Albatayneh A., et al. The Impact of the Thermal Comfort Models on the Prediction of Building Energy Consumption. Sustainability 2018:10(10):3609. https://doi.org/10.3390/su1010360910.3390/su10103609
  31. [31] Albatayneh A., et al. The Significance of Temperature Based Approach Over the Energy Based Approaches in the Buildings Thermal Assessment. Environmental and Climate Technologies 2017:19(1):39–50. https://doi.org/10.1515/rtuect-2017-000410.1515/rtuect-2017-0004
  32. [32] Albatayneh A., Alterman D., et al. Thermal Assessment of Buildings Based on Occupants Behavior and the Adaptive Thermal Comfort Approach. Energy Procedia 2017:115:265–271. https://doi.org/10.1016/j.egypro.2017.05.02410.1016/j.egypro.2017.05.024
  33. [33] Albatayneh A., et al. Assessment of the Thermal Performance of Complete Buildings Using Adaptive Thermal Comfort. Procedia-Social and Behavioral Sciences 2016:6:655–661. https://doi.org/10.1016/j.sbspro.2015.12.05110.1016/j.sbspro.2015.12.051
  34. [34] Albatayneh A., et al. Temperature versus energy based approaches in the thermal assessment of buildings. Energy Procedia 2017:128:46–50. https://doi.org/10.1016/j.egypro.2017.09.01310.1016/j.egypro.2017.09.013
  35. [35] Albatayneh A., et al. The Influence of Building’s Orientation on the Overall Thermal Performance. Environmental Science & Sustainable Development 2018:31:63–79.10.21625/essd.v3iss1.276
  36. [36] Albatayneh A., et al. Renewable Energy Systems to Enhance Buildings Thermal Performance and Decrease Construction Costs. Energy Procedia 2018:152:312–317. https://doi.org/10.1016/j.egypro.2018.09.13810.1016/j.egypro.2018.09.138
  37. [37] Albatayneh A., Assaf M., Jaradat M. The Benefits of Lower Thermal Mass Over Higher Thermal Mass Constructions in Sub-Mediterranean Climates. 2nd International conference on Applied Research in Engineering Science & Technology, Budapest, Hungary, 2019.10.33422/2nd.arset.2019.09.535
  38. [38] Albatayneh A., et al. The Significance of the Orientation on the Overall buildings Thermal Performance-Case Study in Australia. Energy Procedia 2018:152:372–377. https://doi.org/10.1016/j.egypro.2018.09.15910.1016/j.egypro.2018.09.159
  39. [39] Al-Addous M., Albatayneh A. Knowledge gap with the existing building energy assessment systems. Energy Exploration & Exploitation 2020:38(3):783–794. https://doi.org/10.1177/014459871988810010.1177/0144598719888100
  40. [40] Attia S., Al-Khuraissat M. Life Cycle Costing for a Near Zero Energy Building in Jordan: Initial Study. The 5th Architectural Jordanian International Conference. Jordan Engineers Association. 2016.
  41. [41] Attia S., Zawaydeh S. Strategic decision making for zero energy buildings in Jordan [Online]. [Accessed 12.01.2020]. Available: https://orbi.uliege.be/bitstream/2268/202060/1/Syndicate%20of%20Engineers%20ZEB%20Jordan.pdf
DOI: https://doi.org/10.2478/rtuect-2020-0082 | Journal eISSN: 2255-8837 | Journal ISSN: 1691-5208
Language: English
Page range: 11 - 22
Published on: Dec 14, 2020
Published by: Riga Technical University
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2020 Aiman Albatayneh, Mohammad N. Assaf, Mustafa Jaradat, Dariusz Alterman, published by Riga Technical University
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.