Have a personal or library account? Click to login
Ranking of By-products for Single Cell Oil Production. Case of Latvia Cover

Ranking of By-products for Single Cell Oil Production. Case of Latvia

Open Access
|Sep 2020

References

  1. [1] FAO. The State of World Fisheries and Aquaculture 2018. Meeting the sustainable development goals. Rome, 2018.
  2. [2] de O. Finco A. M., Mamani L. D. G., de Carvalho J. C., de Melo Pereira G. V., Thomaz-Soccol V., Soccol C. R. Technological trends and market perspectives for production of microbial oils rich in omega-3. Critical Reviews in Biotechnology 2017:37(5):656–671. https://doi.org/10.1080/07388551.2016.121322110.1080/07388551.2016.1213221
  3. [3] Spalvins K., Blumberga D. Production of Fish Feed and Fish Oil from Waste Biomass Using Microorganisms: Overview of Methods Analyzing Resource Availability. Environmental and Climate Technology 2018:22(1):149–164. https://doi.org/10.2478/rtuect-2018-001010.2478/rtuect-2018-0010
  4. [4] Spolaore P., Joannis-Cassan C., Duran E., Isambert A. Commercial applications of microalgae. J. Biosci. Bioeng. 2006:101(2):87–96. https://doi.org/10.1263/jbb.101.8710.1263/jbb.101.87
  5. [5] Wong M. K. M., Tsui C. K. M., Au D. W. T., Vrijmoed L. L. P. Docosahexaenoic acid production and ultrastructure of the thraustochytrid Aurantiochytrium mangrovei MP2 under high glucose concentrations. Mycoscience 2008:49(4):266–270. https://doi.org/10.1007/S10267-008-0415-710.1007/S10267-008-0415-7
  6. [6] Ward O. P., Singh A. Omega-3/6 fatty acids: Alternative sources of production. Process Biochemistry 2005:40(12):3627–3652. https://doi.org/10.1016/j.procbio.2005.02.02010.1016/j.procbio.2005.02.020
  7. [7] Raghukumar S. Ecology of the marine protists, the labyrinthulomycetes (Thraustochytrids and labyrinthulids). European Journal of Protistology 2002:38(2):127–145. https://doi.org/10.1078/0932-4739-0083210.1078/0932-4739-00832
  8. [8] Takahashi Y., Yoshida M., Inouye I., Watanabe M. M. Diplophrys mutabilis sp. nov., a New Member of Labyrinthulomycetes from Freshwater Habitats. Protist 2014:165(1):50–65. https://doi.org/10.1016/j.protis.2013.10.00110.1016/j.protis.2013.10.001
  9. [9] Tsui C. K. M. Labyrinthulomycetes phylogeny and its implications for the evolutionary loss of chloroplasts and gain of ectoplasmic gliding. Molecular Phylogenetics and Evolution 2009:50(1):129–140. https://doi.org/10.1016/j.ympev.2008.09.02710.1016/j.ympev.2008.09.027
  10. [10] Pan J., del Campo J., Keeling P. J. Reference Tree and Environmental Sequence Diversity of Labyrinthulomycetes. Journal of Eukaryotic Microbiology 2017:64(1):88–96. https://doi.org/10.1111/jeu.1234210.1111/jeu.12342
  11. [11] Alderman D. J., Gareth Jones E. B. Physiological requirements of two marine phycomycetes, Althornia crouchii and Ostracoblabe implexa. Transactions in the British Mycological Society 1971:57(2):213-IN3. https://doi.org/10.1016/S0007-1536(71)80003-710.1016/S0007-1536(71)80003-7
  12. [12] Goldstein S. Development and Nutrition of New Species of Thraustochytrium. American Journal of Botany 1963:50(3):271–279, Mar. 1963. https://doi.org/10.1002/j.1537-2197.1963.tb12234.x10.1002/j.1537-2197.1963.tb12234.x
  13. [13] Allemann M. N., Allen E. E. Characterization and Application of Marine Microbial Omega-3 Polyunsaturated Fatty Acid Synthesis. Methods in Enzymology 2018:605:3–32. https://doi.org/10.1016/bs.mie.2018.02.01810.1016/bs.mie.2018.02.01829909829
  14. [14] Ochsenreither K., Glück C., Stressler T., Fischer L., Syldatk C. Production Strategies and Applications of Microbial Single Cell Oils. Frontiers in Microbiology 2016:7:1539. https://doi.org/10.3389/fmicb.2016.0153910.3389/fmicb.2016.01539505022927761130
  15. [15] Patel A., Rova U., Christakopoulos P., Matsakas L. Simultaneous production of DHA and squalene from Aurantiochytrium sp. grown on forest biomass hydrolysates. Biotechnology for Biofuels 2019:12(1). https://doi.org/10.1186/s13068-019-1593-610.1186/s13068-019-1593-6682094231687043
  16. [16] Ryu B. G., Kim K., Kim J., Han J. I., Yang J. W. Use of organic waste from the brewery industry for high-density cultivation of the docosahexaenoic acid-rich microalga, Aurantiochytrium sp. KRS101. Bioresource Technology 2013:129:351–359. https://doi.org/10.1016/j.biortech.2012.11.04910.1016/j.biortech.2012.11.04923262011
  17. [17] Sahin D., Tas E., Altindag U. H. Enhancement of docosahexaenoic acid (DHA) production from Schizochytrium sp. S31 using different growth medium conditions. AMB Express 2018:8(1):78. https://doi.org/10.1186/s13568-018-0540-410.1186/s13568-018-0540-4578398529368055
  18. [18] Yokoyama R., Salleh B., Honda D. Taxonomic rearrangement of the genus Ulkenia sensu lato based on morphology, chemotaxonomical characteristics, and 18S rRNA gene phylogeny (Thraustochytriaceae, Labyrinthulomycetes): Emendation for Ulkenia and erection of Botryochytrium, Parietichytrium. Mycoscience 2007:48(6):329–341. https://doi.org/10.1007/S10267-007-0377-110.1007/S10267-007-0377-1
  19. [19] Lung Y. T., Tan C. H., Show P. L., Lam H. L., Lan J. C. W. Docosahexaenoic acid production from crude glycerol by schizochytrium limacinum SR21. Chemical Engineering Transactions 2015:45:967–972. https://doi.org/10.3303/CET1545162
  20. [20] Pyle D. J., Garcia R. A., Wen Z. Producing docosahexaenoic acid (DHA)-rich algae from biodiesel-derived crude glycerol: Effects of impurities on DHA production and algal biomass composition. J. Agric. Food Chem. 2008:56(11):3933–3939. https://doi.org/10.1021/jf800602s10.1021/jf800602s18465872
  21. [21] Wei L., Pordesimo L. O., Batchelor W. D. Ethanol production from wood: Comparison of hydrolysis fermentation and gasification biosynthesis. ASABE Annu. Int. Meet. Tech. Pap., 2007. https://doi.org/10.13031/2013.2365810.13031/2013.23658
  22. [22] Chen W. H., Jang M. F., Jheng S. L., Lo C. J., Wang W. Cellulosic sugars from biomass: Effect of acid presoaking on pretreatment efficiency and operating cost estimation for sugar production. Bioresource Technology Reports 2019:7:100259. https://doi.org/10.1016/j.biteb.2019.10025910.1016/j.biteb.2019.100259
  23. [23] Wang S. K., Wang X., Tian Y. T., Cui Y. H. Nutrient recovery from tofu whey wastewater for the economical production of docosahexaenoic acid by Schizochytrium sp. S31. Science of the Total Environment 2020:710:136448. https://doi.org/10.1016/j.scitotenv.2019.13644810.1016/j.scitotenv.2019.13644832050374
  24. [24] Humhal T., Kastanek P., Jezkova Z., Cadkova A., Kohoutkova J., Branyik T. Use of saline waste water from demineralization of cheese whey for cultivation of Schizochytrium limacinum PA-968 and Japonochytrium marinum AN-4. Bioprocess and Biosystems Engineering 2017:40(3):395–402. https://doi.org/10.1007/s00449-016-1707-510.1007/s00449-016-1707-527878590
  25. [25] Ren L. J., Li J., Hu Y. W., Ji X. J., Huang H. Utilization of cane molasses for docosahexaenoic acid production by Schizochytrium sp. CCTCC M209059. Korean Journal of Chemical Engineering 2013:30(4):787–789. https://doi.org/10.1007/s11814-013-0020-010.1007/s11814-013-0020-0
  26. [26] Liang Y., Sarkany N., Cui Y., Yesuf J., Trushenski J., Blackburn J. W. Use of sweet sorghum juice for lipid production by Schizochytrium limacinum SR21. Bioresource Technology 2010:101(10):3623–3627. https://doi.org/10.1016/j.biortech.2009.12.08710.1016/j.biortech.2009.12.08720079633
  27. [27] Gupta A., Abraham R. E., Barrow C. J., Puri M. Omega-3 fatty acid production from enzyme saccharified hemp hydrolysate using a novel marine thraustochytrid strain. Bioresource Technology 2015:184:373–378. https://doi.org/10.1016/j.biortech.2014.11.03110.1016/j.biortech.2014.11.03125497057
  28. [28] Pleissner D., Lam W. C., Sun Z., Lin C. S. K. Food waste as nutrient source in heterotrophic microalgae cultivation. Bioresource. Technology 2013:137:139–146. https://doi.org/10.1016/j.biortech.2013.03.08810.1016/j.biortech.2013.03.08823587816
  29. [29] Spalvins K., Zihare L., Blumberga D. Single cell protein production from waste biomass: Comparison of various industrial by-products. Energy Procedia 2018:147:409–418. https://doi.org/10.1016/j.egypro.2018.07.11110.1016/j.egypro.2018.07.111
  30. [30] Spalvins K., Vamza I., Blumberga D. Single Cell Oil Production from Waste Biomass: Review of Applicable Industrial By-Products. Environmental and Climate Technologies 2019:23(2):325–337. https://doi.org/10.2478/rtuect-2019-007110.2478/rtuect-2019-0071
  31. [31] Spalvins K., Vamza I., Blumberga D. Single cell oil production from waste biomass: Review of applicable industrial by-products. Environmental and Climate Technologies 2019:23(3):325–337. https://doi.org/10.2478/rtuect-2019-007110.2478/rtuect-2019-0071
  32. [32] Spalvins K., Zihare L., Blumberga D. Single cell protein production from waste biomass: comparison of various industrial by-products. Energy procedia 2018:147:409–418. https://doi.org/10.1016/j.egypro.2018.07.11110.1016/j.egypro.2018.07.111
  33. [33] Quispe C. A. G., Coronado C. J. R., Carvalho J. A. Glycerol: Production, consumption, prices, characterization and new trends in combustion. Renewable and Sustainable Energy Reviews 2013:27:475–493. https://doi.org/10.1016/j.rser.2013.06.01710.1016/j.rser.2013.06.017
  34. [34] Energy balance, in natural units (NACE Rev.2) | Central Statistical Bureau of Latvia. [Online]. [Accessed: 29.12.2019]. Available: https://www.csb.gov.lv/lv/statistika/statistikas-temas/vide-energetika/energetika/tabulas/eng010/energobilance-naturalas-mervienibas-nace-2-red.
  35. [35] Kumar L. R., Kaur R., Yellapu S. K., Zhang X., Tyagi R. D. Biodiesel Production From Oleaginous Microorganisms With Wastes as Raw Materials”, in Biofuels: Alternative Feedstocks and Conversion Processes for the Production of Liquid and Gaseous Biofuels, Elsevier, 2019. https://doi.org/10.1016/B978-0-12-816856-1.00027-010.1016/B978-0-12-816856-1.00027-0
  36. [36] Central Statistical Bureau of Latvia. Environment of Latvia in Figures: Climate Change, Natural Resources and Environmental Quality in 2018. Riga, 2019.
  37. [37] LVĢMC. Latvian Environment, “Review ‘3-Atkritumi,’” 2019. [Online]. Available: http://parissrv.lvgmc.lv/#viewType=reportIndexView&addrefreshtimer=true&donotrenderwithoutrole=true&donotusewrapper=true&type=3WA&incrementCounter=1. [Accessed: 13-May-2020].
  38. [38] Seo Y. H., Lee I., Jeon H., Han J.-I. Efficient conversion from cheese whey to lipid using Cryptococcus curvatus. Biochemical Engineering Journal 2014:90:149–153. https://doi.org/10.1016/j.bej.2014.05.01810.1016/j.bej.2014.05.018
  39. [39] Carota E., Crognale S., D’Annibale A., Gallo A. M., Stazi S. R., Petruccioli M. A sustainable use of Ricotta Cheese Whey for microbial biodiesel production. Science of the Total Environment 2017:584–585:554–560. https://doi.org/10.1016/j.scitotenv.2017.01.06810.1016/j.scitotenv.2017.01.06828169024
  40. [40] U. Quantiy in Tonnes. Milk Market Observatory Production of Dairy products in the TOTAL CHEESE. 2018.
  41. [41] Santonja G. G., Karlis P., Stubdrup K. R. Best Available Techniques (BAT) Reference Document for the Food, Drink and Milk Industries. 2010.
  42. [42] Central Statistical Bureau of Latvia. Production of dairy products. [Online]. [Accessed: 08.12.2019]. Available: https://www.csb.gov.lv/lv/statistika/statistikas-temas/lauksaimnieciba/lopkopiba/tabulas/llg112/piena-produktu-razosana.
  43. [43] dos S. Mathias T. R., de Aguiar P. F., de A. Silva J. B., de Mello P. P. M., Sérvulo E. F. C. Brewery Wastes Reuse for Protease Production by Lactic Acid Bacteria Fermentation. Food Technol. Biotechnol. 2017:55(2):218–224. https://doi.org/10.17113/ftb.55.02.17.437810.17113/ftb.55.02.17.4378556935228867951
  44. [44] Central Statistical Bureau of Latvia, RUG010. Sale of manufactured industrial products (summary of selected code groups of the PRODCOM classification), 2019. [Online]. [Accessed: 12.04.2020]. Available: http://data1.csb.gov.lv/pxweb/en/rupnbuvn/rupnbuvn__rupn__ikgad/RUG010.px/table/tableViewLayout1/.
  45. [45] Catană M., Catană L., Lazăr M. A., Lazăr A. G., Teodorescu R. I., Asănică A. C., Belc N. Achieving of functional ingredient from apple wastes resulting from the apple juice industry. AgroLife Scientific Journal 2018:7(1):9–17.10.2478/alife-2018-0041
  46. [46] Jacob F. F., Striegel L., Rychlik M., Hutzler M., Methner F.-J. Spent Yeast from Brewing Processes: A Biodiverse Starting Material for Yeast Extract Production. Fermentation 2019:5(2):51. https://doi.org/10.3390/fermentation502005110.3390/fermentation5020051
  47. [47] Park W. K., Moon M., Shin S. E., Cho J. M., Suh W. I., Chang Y. K., Lee B. S. Economical DHA (Docosahexaenoic acid) production from Aurantiochytrium sp. KRS101 using orange peel extract and low cost nitrogen sources. Algal Research 2018:29:71–79. https://doi.org/10.1016/j.algal.2017.11.01710.1016/j.algal.2017.11.017
  48. [48] Antczak A., Marchwicka M., Szadkowski J., Drożdżek M. Sugars Yield Obtained after Acid and Enzymatic Hydrolysis of Fast-growing Poplar Wood Species. BioResources 2018:13(4). https://doi.org/10.15376/biores.13.4.8629-864510.15376/biores.13.4.8629-8645
  49. [49] Scott S. D., Armenta R. E., Berryman K. T., Norman A. W. Use of raw glycerol to produce oil rich in polyunsaturated fatty acids by a thraustochytrid. Enzyme and Microbial Technology 2011:48(3):267–272. https://doi.org/10.1016/j.enzmictec.2010.11.00810.1016/j.enzmictec.2010.11.00822112910
  50. [50] INSIGHT: Europe glycerine spot prices post triple-digit rises on fears of further biodiesel output cuts | ICIS. [Online]. [Accessed: 13.05.2020]. Available: https://www.icis.com/explore/resources/news/2020/04/03/10490229/europe-glycerine-spot-prices-post-triple-digit-rises-on-fears-of-further-biodiesel-output-cuts.
  51. [51] Sara P., Cacheira I., Luís André Roque Fortes. MSc Thesis in Biological Engineering “Heterotrophic cultivation of Thraustochytrids using glycerol and saline medium from a dairy effluent”, Universidade do Algarve 2016.
  52. [52] Fani K. W., Chen F., Jonesi E. B. G., Vrijmoedi L. L. P. Utilization of food processing waste by Thraustochytrids, 2000.
DOI: https://doi.org/10.2478/rtuect-2020-0071 | Journal eISSN: 2255-8837 | Journal ISSN: 1691-5208
Language: English
Page range: 258 - 271
Published on: Sep 23, 2020
Published by: Riga Technical University
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2020 Elīna Račko, Dagnija Blumberga, Krišs Spalviņš, Eglė Marčiulaitienė, published by Riga Technical University
This work is licensed under the Creative Commons Attribution 4.0 License.