Have a personal or library account? Click to login
Treatment of Particulate Matter Pollution: People’s Attitude and Readiness to Act Cover

Treatment of Particulate Matter Pollution: People’s Attitude and Readiness to Act

Open Access
|Sep 2020

References

  1. [1] Chen J., et al., 2017. A review of biomass burning: Emissions and impacts on air quality, health and climate in China. Science of Total Environment 2016:579:1000–1034. https://doi.org/10.1016/j.scitotenv.2016.11.02510.1016/j.scitotenv.2016.11.02527908624
  2. [2] Clean Heat. Residential wood burning. Environmental impact and sustainable solutions. Berlin: Deutdche Umwelthilfe, 2016.
  3. [3] Pereira G., et al. Development of a model for particulate matter pollution in Australia with implications for other satellite-based models. Environmental Research 2017:159:9–15. https://doi.org/10.1016/j.envres.2017.07.04410.1016/j.envres.2017.07.04428759784
  4. [4] Oh I., et al. Association between particulate matter concentration and symptoms of atopic dermatitis in children living in an industrial urban area of South Korea. Environmental Research 2018:160:462–468. https://doi.org/10.1016/j.envres.2017.10.03010.1016/j.envres.2017.10.03029078139
  5. [5] Directive 2009/125/EC of the European Parliament and of the Council of 21 October 2009 establishing a framework for the setting of ecodesign requirements. Official Journal of the Europeam Union 2009:L 285/10.
  6. [6] Priedniece V., et al. Laboratory research of the flue gas condenser – fog unit. Energy Procedia 2018:147:482–487. https://doi.org/10.1016/j.egypro.2018.07.05610.1016/j.egypro.2018.07.056
  7. [7] Priedniece V., et al. Particulate Matter Emission Decrease Possibility from Household Sector using Flue Gas Condenser – Fog Unit. Analysis and Interpretation of Results. Environmental and Climate Technologies 2019:23(1):135–151. https://doi.org/10.2478/rtuect-2019-001010.2478/rtuect-2019-0010
  8. [8] Fog unit (IFUS) | ENVIRONMENTAL SCIENCE [Online]. [Accessed: 17.10.2019]. Available: https://videszinatne.rtu.lv/en/science/project-and-research/fog-unit-ifus
  9. [9] Bhutto A.W., et al. Promoting sustainability of use of biomass as energy resource: Pakistan’s perspective. Environmental Science and Pollution Research 2019:26:29606–29619. https://doi.org/10.1007/s11356-019-06179-710.1007/s11356-019-06179-731452125
  10. [10] Decker T., Menrad K. House owners’ perceptions and factors influencing their choice of specific heating systems in Germany. Energy Policy 2015:85:150–161. https://doi.org/10.1016/j.enpol.2015.06.00410.1016/j.enpol.2015.06.004
  11. [11] Linares C., et al. Influence of advections of particulate matter from biomass combustion on specific-cause mortality in Madrid in the period 2004–2009. Environmental Science and Pollution Research 2015:22:7012–7019. https://doi.org/10.1007/s11356-014-3916-210.1007/s11356-014-3916-225483974
  12. [12] Rouvinen S., Matero J. Stated preferences of Finnish private homeowners for residential heating systems: A discrete choice experiment. Biomass and Bioenergy 2013:57:22–32. https://doi.org/10.1016/j.biombioe.2012.10.01010.1016/j.biombioe.2012.10.010
  13. [13] Bjørnstad E. Diffusion of renewable heating technologies in households. Experiences from the Norwegian Household Subsidy Programme. Energy Policy 2012:48(0301):148–158. https://doi.org/10.1016/j.enpol.2012.04.07810.1016/j.enpol.2012.04.078
  14. [14] Wang Z., et al. Cleaner heating choices in northern rural China: Household factors and the dual substitution policy. Journal of Environment Management 2019:249:109433. https://doi.org/10.1016/j.jenvman.2019.10943310.1016/j.jenvman.2019.10943331450194
  15. [15] Woodward A., et al. Population health impacts of China’s climate change policies. Environmental Research 2019:175:178–185. https://doi.org/10.1016/j.envres.2019.05.02010.1016/j.envres.2019.05.02031129527
  16. [16] Lillemo S.C., et al. Households’ heating investments: The effect of motives andattitudes on choice of equipment. Biomass and Bioenergy 2013:57:4–12. https://doi.org/10.1016/j.biombioe.2013.01.02710.1016/j.biombioe.2013.01.027
  17. [17] Sopha B. M., et al. Norwegian households’ perception of wood pellet stove compared to air-to-air heat pump and electric heating. Energy Policy 2010:38(7):3744–3754. https://doi.org/10.1016/j.enpol.2010.02.05210.1016/j.enpol.2010.02.052
  18. [18] Esterkin P. I. Thermotechnical measurements in the combustion of gas and liquid fuels. Leningrad: Nedra, 1981. (in Russian)
  19. [19] Ozaki R. Adopting sustainable innovation: What makes consumers sign up to green electricity? Business Strategy and the Envronment 2011:20(1):1–17. https://doi.org/10.1002/bse.65010.1002/bse.650
  20. [20] Priedniece V., et al. Sprayed Water Flowrate, Temperature and Drop Size Effects on Small Capacity Flue Gas Condenser’s Performance. Environmental and Climate Technologies 2019:23(3):333-346. https://doi.org/10.2478/rtuect-2019-009910.2478/rtuect-2019-0099
  21. [21] Jimenez-Bescos C., Oregi X. Implementing User Behaviour on Dynamic Building Silmulations for Energy Consumptions. Environmental and Climate Technologies 2019:23(3):308-318. https://doi.org/10.2478/rtuect-2019-009710.2478/rtuect-2019-0097
DOI: https://doi.org/10.2478/rtuect-2020-0069 | Journal eISSN: 2255-8837 | Journal ISSN: 1691-5208
Language: English
Page range: 231 - 246
Published on: Sep 23, 2020
Published by: Riga Technical University
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2020 Vivita Priedniece, Vladimirs Kirsanovs, Toms Prodanuks, Ivars Veidenbergs, Dagnija Blumberga, published by Riga Technical University
This work is licensed under the Creative Commons Attribution 4.0 License.