[1] Brennan L., Owende P. Biofuels from microalgae-A review of technologies for production, processing, and extractions of biofuels and co-products. Renewable and. Sustainable Energy Reviews 2010:14:(2):557–577. https://doi.org/10.1016/j.rser.2009.10.00910.1016/j.rser.2009.10.009
[2] Safi C., Zebib B., Merah O., Pontalier P. Y., Vaca-Garcia C. Morphology, composition, production, processing and applications of Chlorella vulgaris: A review. Renewable and Sustainable Energy Reviews 2014:35:265–278. https://doi.org/10.1016/j.rser.2014.04.00710.1016/j.rser.2014.04.007
[13] Iwamoto H. Industrial Production of Microalgal Cell-mass and Secondary Products – Major Industrial Species. In Handbook of Microalgal Culture: Biotechnology and Applied Phycology, A. Richmond, Ed. Blackwell Science, 2004, pp. 255–263.10.1002/9780470995280.ch11
[19] Liu J., Sun Z., Gerken H., Liu Z., Jiang Y., Chen F. Chlorella zofingiensis as an alternative microalgal producer of astaxanthin: Biology and industrial potential. Marine Drugs 2014:12(6):3487–3515. https://doi.org/10.3390/md1206348710.3390/md12063487407158824918452
[23] Bock C., Krienitz L., Pröschold T. Taxonomic reassessment of the genus Chlorella (Trebouxiophyceae) using molecular signatures (barcodes), including description of seven new species. Fottea 2011:11(2):293–312. https://doi.org/10.5507/fot.2011.02810.5507/fot.2011.028
[25] Kessler E., Huss V. A. R. Comparative Physiology and Biochemistry and Taxonomic Assignment of the Chlorella (Chlorophyceae) Strains of the Culture Collection of the University of Texas at Austin. Journal of Phycology 1992:28(4):550–553. https://doi.org/10.1111/j.0022-3646.1992.00550.x10.1111/j.0022-3646.1992.00550.x
[26] Santhoshkumar K., Prasanthkumar S., George Ray J. Biomass Productivity and Fatty Acid Composition of Chlorella lobophora V M Andreyeva, a Potential Feed Stock for Biodiesel Production. American Journal of Plant Science 2015:6(15):2453–2460. https://doi.org/10.4236/ajps.2015.61524710.4236/ajps.2015.615247
[27] Santhosh Kumar K., Prasanthkumar S., Ray J. G. Biomass yield, oil productivity and fatty acid profile of Chlorella lobophora cultivated in diverse eutrophic wastewaters. Biocatalysis and Agricultural Biotechnology 2017:11:338–344. https://doi.org/10.1016/j.bcab.2017.08.00610.1016/j.bcab.2017.08.006
[28] Bhalamurugan G. L., Valerie O., Mark L. Valuable bioproducts obtained from microalgal biomass and their commercial applications: A review. Environmental Engineering Research 2018:23(3):229–241. https://doi.org/10.4491/eer.2017.22010.4491/eer.2017.220
[34] Deviram G., Mathimani T. Anto S., Ahamed T. S., Ananth D. A., Pugazhendhi A. Applications of microalgal and cyanobacterial biomass on a way to safe, cleaner and a sustainable environment. Journal of Cleaner Production 2020:253:119770. https://doi.org/10.1016/j.jclepro.2019.11977010.1016/j.jclepro.2019.119770
[40] Dineshkumar R., Subramanian G., Dash S. K., Sen R. Development of an optimal light-feeding strategy coupled with semi-continuous reactor operation for simultaneous improvement of microalgal photosynthetic efficiency, lutein production and CO2 sequestration. Biochemical Engineering Journal 2016:113:47–56. https://doi.org/10.1016/j.bej.2016.05.01110.1016/j.bej.2016.05.011
[47] Lowrey J., Brooks M. S., McGinn P. J. Heterotrophic and mixotrophic cultivation of microalgae for biodiesel production in agricultural wastewaters and associated challenges—a critical review. Journal of Applied Phycology 2015:27(4):1485–1498. https://doi.org/10.1007/s10811-014-0459-310.1007/s10811-014-0459-3
[48] Li Y., Zhou W., Hu B., Min M., Chen P., Ruan R. R. Integration of algae cultivation as biodiesel production feedstock with municipal wastewater treatment: Strains screening and significance evaluation of environmental factors. Bioresource Technology 2011:102(23):10861–10867. https://doi.org/10.1016/j.biortech.2011.09.06410.1016/j.biortech.2011.09.06421982450
[50] Scarsella M., Belotti G., De Filippis P., Bravi M. Study on the optimal growing conditions of Chlorella vulgaris in bubble column photobioreactors. Chem. Eng. Trans 2010:20:85–90.
[51] Babaei A., Mehrnia M. R., Shayegan J., Sarrafzadeh M. H., Amini E. Evaluation of Nutrient Removal and Biomass Production Through Mixotrophic, Heterotrophic, and Photoautotrophic Cultivation of Chlorella in Nitrate and Ammonium Wastewater. International Journal of Environmental Research 2018:12(2):167–178. https://doi.org/10.1007/s41742-018-0077-z10.1007/s41742-018-0077-z
[57] Oberholster P. J., Cheng P. H., Genthe B., Steyn M. The environmental feasibility of low-cost algae-based sewage treatment as a climate change adaption measure in rural areas of SADC countries. Journal of Applied Phycology 2019:31(1):355–363. https://doi.org/10.1007/s10811-018-1554-710.1007/s10811-018-1554-7
[60] Álvarez-Díaz P. D., Ruiz J., Arbib Z., Barragán J., Garrido-Pérez M. C., Perales J. A. Freshwater microalgae selection for simultaneous wastewater nutrient removal and lipid production. Algal Research 2017:24:477–485. https://doi.org/10.1016/j.algal.2017.02.00610.1016/j.algal.2017.02.006
[64] Tang H., Chen M., Garcia M. E. D., Abunasser N., Ng K. Y. S., Salley S. O. Culture of microalgae Chlorella minutissima for biodiesel feedstock production. Biotechnology and Bioengineering 2011:108(10):2280–2287. https://doi.org/10.1002/bit.2316010.1002/bit.2316021495011
[71] Kwon G., Nam J.-H., Kim D.-M., Song C., Jahng D. Growth and nutrient removal of Chlorella vulgaris in ammonia-reduced raw and anaerobically-digested piggery wastewaters. Environmental Engineering Research 2020:25(2):135–146. https://doi.org/10.4491/eer.2018.44210.4491/eer.2018.442
[74] de-Bashan L. E., Trejo A., Huss V. A. R., Hernandez J. P., Bashan Y. Chlorella sorokiniana UTEX 2805, a heat and intense, sunlight-tolerant microalga with potential for removing ammonium from wastewater. Bioresource Technology 2008:99(11):4980–4989. https://doi.org/10.1016/j.biortech.2007.09.06510.1016/j.biortech.2007.09.06518024023
[82] Murwanashyaka T., Shen L., Ndayambaje J. D., Wang Y., He N., Lu Y. Kinetic and transcriptional exploration of Chlorella sorokiniana in heterotrophic cultivation for nutrients removal from wastewaters. Algal Research 2017:24:467–476. https://doi.org/10.1016/j.algal.2016.08.00210.1016/j.algal.2016.08.002
[84] Rosenberg J. N., Kobayashi N., Barnes A., Noel E. A., Betenbaugh M. J., Oyler G. A. Comparative analyses of three Chlorella species in response to light and sugar reveal distinctive lipid accumulation patterns in the microalga C. sorokiniana. PLoS One 2014:9(4). https://doi.org/10.1371/journal.pone.009246010.1371/journal.pone.0092460397468224699196
[85] Ribeiro J. E. S. et al. Production of Chlorella protothecoides biomass, chlorophyll and carotenoids using the dairy industry by-product scotta as a substrate. Biocatalysis and Agricultural Biotechnology 2017:11:207–213. https://doi.org/10.1016/j.bcab.2017.07.00710.1016/j.bcab.2017.07.007
[86] Feng X., Walker T. H., Bridges W. C., Thornton C., Gopalakrishnan K. Biomass and lipid production of Chlorella protothecoides under heterotrophic cultivation on a mixed waste substrate of brewer fermentation and crude glycerol. Bioresource Technology 2014:166:17–23. https://doi.org/10.1016/j.biortech.2014.03.12010.1016/j.biortech.2014.03.12024880808
[88] Xiufeng Li Q. W., Han Xu. Large-Scale Biodiesel Production From Microalga Chlorella protothecoides Through Heterotrophic Cultivation in Bioreactors. Biotechnology and Bioengineering 2007:98(4):764–771. https://doi.org/10.1002/bit.2148910.1002/bit.2148917497732
[89] Shi X. M., Jiang Y., Chen F. High-yield production of lutein by the green microalga Chlorella protothecoides in heterotrophic fed-batch culture. Biotechnology Progress 2002:18(4):723–727. https://doi.org/10.1021/bp010198710.1021/bp010198712153304
[90] Ramos Tercero E. A., Sforza E., Morandini M., Bertucco A. Cultivation of Chlorella protothecoides with urban wastewater in continuous photobioreactor: Biomass productivity and nutrient removal. Applied Biochemistry and Biotechnology 2014:172(3):1470–1485. https://doi.org/10.1007/s12010-013-0629-910.1007/s12010-013-0629-924222500
[91] Hayashi T., Otaki R., Hirai K., Tsuzuki M., Sato N. Optimization of seawater-based triacylglycerol accumulation in a freshwater green alga, Chlorella kessleri, through simultaneous imposition of lowered-temperature and enhanced-light intensity. Algal Research 2017:28:100–107. https://doi.org/10.1016/j.algal.2017.10.01610.1016/j.algal.2017.10.016
[92] Wang Y., Chen T., Qin S. Differential fatty acid profiles of Chlorella kessleri grown with organic materials. Chemical Technology and Biotechnology 2013:88(4):651–657. https://doi.org/10.1002/jctb.388110.1002/jctb.3881
[94] Liu Y., Lv J., Feng J., Liu Q., Nan F., Xie S. Treatment of real aquaculture wastewater from a fishery utilizing phytoremediation with microalgae. Chemical Technology and Biotechnology 2019:94(3):900–910. https://doi.org/10.1002/jctb.583710.1002/jctb.5837
[98] Daliry S., Hallajisani A., Roshandeh J. M., Nouri H., Golzary A. Investigation of optimal condition for Chlorella vulgaris microalgae growth. Glob. J. Environ. Sci. Manag. 2017:3(2):217–230.
[103] Ramsundar P., Guldhe A., Singh P., Bux F. Assessment of municipal wastewaters at various stages of treatment process as potential growth media for Chlorella sorokiniana under different modes of cultivation. Bioresource Technology 2017:227:82–92. https://doi.org/10.1016/j.biortech.2016.12.03710.1016/j.biortech.2016.12.03728013140
[104] Khalid A. A. H., Yaakob Z., Abdullah S. R. S., Takriff M. S. Growth improvement and metabolic profiling of native and commercial Chlorella sorokiniana strains acclimatized in recycled agricultural wastewater. Bioresource Technology 2018:247:930–939. https://doi.org/10.1016/j.biortech.2017.09.19510.1016/j.biortech.2017.09.19530060432
[106] Li Y., Zhou W., Hu B., Min M., Chen P., Ruan R. R. Effect of light intensity on algal biomass accumulation and biodiesel production for mixotrophic strains Chlorella kessleri and Chlorella protothecoide cultivated in highly concentrated municipal wastewater. Biotechnology and Bioengineering 2012:109(9):2222–2229. https://doi.org/10.1002/bit.2449110.1002/bit.2449122407758
[108] Juneja A., Ceballos R. M., Murthy G. S. Effects of environmental factors and nutrient availability on the biochemical composition of algae for biofuels production: A review. Energies 2013:6(9):4607–4638. https://doi.org/10.3390/en609460710.3390/en6094607
[110] Fu W., Gudmundsson O., Feist A. M., Herjolfsson G., Brynjolfsson S., Palsson B. Maximizing biomass productivity and cell density of Chlorella vulgaris by using light-emitting diode-based photobioreactor. Journal of Biotechnology 2012:161(3):242–249. https://doi.org/10.1016/j.jbiotec.2012.07.00410.1016/j.jbiotec.2012.07.00422796827
[112] Deng X. Y. et al. Glucose addition-induced changes in the growth and chemical compositions of a freshwater microalga Chlorella kessleri. Chemical Technology and Biotechnology 2019:94(4):1202–1209. https://doi.org/10.1002/jctb.587010.1002/jctb.5870