Have a personal or library account? Click to login
Potential of Chlorella Species as Feedstock for Bioenergy Production: A Review Cover

Potential of Chlorella Species as Feedstock for Bioenergy Production: A Review

Open Access
|Sep 2020

References

  1. [1] Brennan L., Owende P. Biofuels from microalgae-A review of technologies for production, processing, and extractions of biofuels and co-products. Renewable and. Sustainable Energy Reviews 2010:14:(2):557–577. https://doi.org/10.1016/j.rser.2009.10.00910.1016/j.rser.2009.10.009
  2. [2] Safi C., Zebib B., Merah O., Pontalier P. Y., Vaca-Garcia C. Morphology, composition, production, processing and applications of Chlorella vulgaris: A review. Renewable and Sustainable Energy Reviews 2014:35:265–278. https://doi.org/10.1016/j.rser.2014.04.00710.1016/j.rser.2014.04.007
  3. [3] Amer L., Adhikari B., Pellegrino J. Technoeconomic analysis of five microalgae-to-biofuels processes of varying complexity. Bioresource Technology 2011:102(20):9350–9359. https://doi.org/10.1016/j.biortech.2011.08.01010.1016/j.biortech.2011.08.01021875787
  4. [4] Barsanti L., Gualtieri P. Is exploitation of microalgae economically and energetically sustainable. Algal Research 2017:31:107–115. https://doi.org/10.1016/j.algal.2018.02.00110.1016/j.algal.2018.02.001
  5. [5] Davis R., Aden A., Pienkos P. T. Techno-economic analysis of autotrophic microalgae for fuel production. Applied Energy 2011:88(10):3524–3531. https://doi.org/10.1016/j.apenergy.2011.04.01810.1016/j.apenergy.2011.04.018
  6. [6] Smith V. H., Sturm B. S. M., deNoyelles F. J., Billings S. A. The ecology of algal biodiesel production. Trends in Ecology and Evolution 2010:25(5):301–309. https://doi.org/10.1016/j.tree.2009.11.00710.1016/j.tree.2009.11.00720022660
  7. [7] Chiaramonti D. et al. Review of energy balance in raceway ponds for microalgae cultivation: Re-thinking a traditional system is possible. Applied Energy 2013:102:101–111. https://doi.org/10.1016/j.apenergy.2012.07.04010.1016/j.apenergy.2012.07.040
  8. [8] Chew K. W. et al. Microalgae biorefinery: High value products perspectives. Bioresource Technology 2017:229:53–62. https://doi.org/10.1016/j.biortech.2017.01.00610.1016/j.biortech.2017.01.00628107722
  9. [9] Koutra E., Economou C. N., Tsafrakidou P., Kornaros M. Bio-Based Products from Microalgae Cultivated in Digestates. Trends in Biotechnology 2018:36(8):819–833. https://doi.org/10.1016/j.tibtech.2018.02.01510.1016/j.tibtech.2018.02.01529605178
  10. [10] Guiry M. D. How many species of algae are there? Journal of Phycology 2012:48(5):1057–1063. https://doi.org/10.1111/j.1529-8817.2012.01222.x10.1111/j.1529-8817.2012.01222.x27011267
  11. [11] Borowitzka M. A., Moheimani N. R. (Eds.) Algae for Biofuels and Energy. Springer, 2013. https://doi.org/10.1007/978-94-007-5479-910.1007/978-94-007-5479-9
  12. [12] Richmond A. Handbook of Microalgal Culture: Biotechnology and Applied Phycology. Oxford: Blackwell Science, 2004.
  13. [13] Iwamoto H. Industrial Production of Microalgal Cell-mass and Secondary Products – Major Industrial Species. In Handbook of Microalgal Culture: Biotechnology and Applied Phycology, A. Richmond, Ed. Blackwell Science, 2004, pp. 255–263.10.1002/9780470995280.ch11
  14. [14] Champenois J., Marfaing H., Pierre R. Review of the taxonomic revision of Chlorella and consequences for its food uses in Europe. Journal of Applied Phycology 2015:27(5):1845–1851. https://doi.org/10.1007/s10811-014-0431-210.1007/s10811-014-0431-2
  15. [15] Zhou W., Li Y., Min M., Hu B., Chen P., Ruan R. Local bioprospecting for high-lipid producing microalgal strains to be grown on concentrated municipal wastewater for biofuel production. Bioresource Technology 2011:102(13):6909–6919. https://doi.org/10.1016/j.biortech.2011.04.03810.1016/j.biortech.2011.04.03821546246
  16. [16] Maxwell D. P., Falk S., Trick C. G., Huner N. P. A. Growth at low temperature mimics high-light acclimation in Chlorella vulgaris. Plant Physiology 1994:105(2):535–543. https://doi.org/10.1104/pp.105.2.53510.1104/pp.105.2.53515939112232221
  17. [17] Kessler E. Upper limits of temperature for growth in Chlorella (Chlorophyceae). Plant Systematics and Evolution 1985:151(1–2):67–71. https://doi.org/10.1007/BF0241802010.1007/BF02418020
  18. [18] Michael A. Borowitzka. Species and Strain Selection. In Algae for Biofuels and Energy Ed. Springer, 2013, pp. 76–89. https://doi.org/10.1007/978-94-007-5479-9_410.1007/978-94-007-5479-9_4
  19. [19] Liu J., Sun Z., Gerken H., Liu Z., Jiang Y., Chen F. Chlorella zofingiensis as an alternative microalgal producer of astaxanthin: Biology and industrial potential. Marine Drugs 2014:12(6):3487–3515. https://doi.org/10.3390/md1206348710.3390/md12063487407158824918452
  20. [20] Huss V. A. R. et al. Biochemical Taxonomy and Molecular Phylogeny of the Genus Chlorella Sensu Lato (Chlorophyta). Journal Phycology 1999:35(3):587–598. https://doi.org/10.1046/j.1529-8817.1999.3530587.x10.1046/j.1529-8817.1999.3530587.x
  21. [21] Kumar K., Mishra S. K., Shrivastav A., Park M. S., Yang J. W. Recent trends in the mass cultivation of algae in raceway ponds. Renewable and Sustainable Energy Reviews 2015:51:875–885. https://doi.org/10.1016/j.rser.2015.06.03310.1016/j.rser.2015.06.033
  22. [22] Krienitz L., Hegewald E. H., Hepperle D., Huss V. A. R., Rohr T., Wolf M. Phylogenetic relationship of Chlorella and Parachlorella gen. nov. (Chlorophyta, Trebouxiophyceae). Phycologia 2004:43(5):529–542. https://doi.org/10.2216/i0031-8884-43-5-529.110.2216/i0031-8884-43-5-529.1
  23. [23] Bock C., Krienitz L., Pröschold T. Taxonomic reassessment of the genus Chlorella (Trebouxiophyceae) using molecular signatures (barcodes), including description of seven new species. Fottea 2011:11(2):293–312. https://doi.org/10.5507/fot.2011.02810.5507/fot.2011.028
  24. [24] Krienitz L., Huss V. A. R., Bock C. Chlorella: 125 years of the green survivalist. Trends in Plant Science 2015:20(2):67–69. https://doi.org/10.1016/j.tplants.2014.11.00510.1016/j.tplants.2014.11.005
  25. [25] Kessler E., Huss V. A. R. Comparative Physiology and Biochemistry and Taxonomic Assignment of the Chlorella (Chlorophyceae) Strains of the Culture Collection of the University of Texas at Austin. Journal of Phycology 1992:28(4):550–553. https://doi.org/10.1111/j.0022-3646.1992.00550.x10.1111/j.0022-3646.1992.00550.x
  26. [26] Santhoshkumar K., Prasanthkumar S., George Ray J. Biomass Productivity and Fatty Acid Composition of Chlorella lobophora V M Andreyeva, a Potential Feed Stock for Biodiesel Production. American Journal of Plant Science 2015:6(15):2453–2460. https://doi.org/10.4236/ajps.2015.61524710.4236/ajps.2015.615247
  27. [27] Santhosh Kumar K., Prasanthkumar S., Ray J. G. Biomass yield, oil productivity and fatty acid profile of Chlorella lobophora cultivated in diverse eutrophic wastewaters. Biocatalysis and Agricultural Biotechnology 2017:11:338–344. https://doi.org/10.1016/j.bcab.2017.08.00610.1016/j.bcab.2017.08.006
  28. [28] Bhalamurugan G. L., Valerie O., Mark L. Valuable bioproducts obtained from microalgal biomass and their commercial applications: A review. Environmental Engineering Research 2018:23(3):229–241. https://doi.org/10.4491/eer.2017.22010.4491/eer.2017.220
  29. [29] Mobin S., Alam F. Some Promising Microalgal Species for Commercial Applications: A review. Energy Procedia, 2017:110:510–517. https://doi.org/10.1016/j.egypro.2017.03.17710.1016/j.egypro.2017.03.177
  30. [30] Becker E. W. Micro-algae as a source of protein. Biotechnology Advances 2007:25(2):207–210. https://doi.org/10.1016/j.biotechadv.2006.11.00210.1016/j.biotechadv.2006.11.002
  31. [31] Tan C. H. et al. Examination of indigenous microalgal species for maximal protein synthesis. Biochemical Engineering Journal 2020:154:107425. https://doi.org/10.1016/j.bej.2019.10742510.1016/j.bej.2019.107425
  32. [32] Atsushi Hirano Y. O., Ueda R., Hirayama S. CO2 fixation and ethanol production with microalgal photosynthesis and intracellular anaerobic fermentation. Energy 1997:22(2–3):137–142. https://doi.org/10.1016/S0360-5442(96)00123-510.1016/S0360-5442(96)00123-5
  33. [33] Mizuno Y. et al. Sequential accumulation of starch and lipid induced by sulfur deficiency in Chlorella and Parachlorella species. Bioresource Technology 2013:129:150–155. https://doi.org/10.1016/j.biortech.2012.11.03010.1016/j.biortech.2012.11.03023238344
  34. [34] Deviram G., Mathimani T. Anto S., Ahamed T. S., Ananth D. A., Pugazhendhi A. Applications of microalgal and cyanobacterial biomass on a way to safe, cleaner and a sustainable environment. Journal of Cleaner Production 2020:253:119770. https://doi.org/10.1016/j.jclepro.2019.11977010.1016/j.jclepro.2019.119770
  35. [35] Othman R., Noh N. H., Hatta F. A. M., Jamaludin M. A. Natural Carotenoid Pigments of 6 Chlorophyta Freshwater Green Algae Species. Lifescience Global 2018:1–5. https://doi.org/10.6000/1927-5951.2018.08.01.110.6000/1927-5951.2018.08.01.1
  36. [36] Fernández-Sevilla J. M., Acién Fernández F. G., Molina Grima E. Biotechnological production of lutein and its applications. Applied Microbiology and Biotechnology 2010:86(1):27–40. https://doi.org/10.1007/s00253-009-2420-y10.1007/s00253-009-2420-y20091305
  37. [37] D’Este M., De Francisci D., Angelidaki I. Novel protocol for lutein extraction from microalga Chlorella vulgaris. Biochemical Engineering Journal 2017:127:175–179. https://doi.org/10.1016/j.bej.2017.06.01910.1016/j.bej.2017.06.019
  38. [38] Chen C. Y., Liu C. C. Optimization of lutein production with a two-stage mixotrophic cultivation system with Chlorella sorokiniana MB-1. Bioresource Technology 2018:262:74–79. https://doi.org/10.1016/j.biortech.2018.04.02410.1016/j.biortech.2018.04.02429698840
  39. [39] Wei D., Chen F., Chen G., Zhang X. W., Liu L. J., Zhang H. Enhanced production of lutein in heterotrophic Chlorella protothecoides by oxidative stress. Science in China Series C: Life Sciences 2008:51(12):1088–1093. https://doi.org/10.1007/s11427-008-0145-210.1007/s11427-008-0145-219093082
  40. [40] Dineshkumar R., Subramanian G., Dash S. K., Sen R. Development of an optimal light-feeding strategy coupled with semi-continuous reactor operation for simultaneous improvement of microalgal photosynthetic efficiency, lutein production and CO2 sequestration. Biochemical Engineering Journal 2016:113:47–56. https://doi.org/10.1016/j.bej.2016.05.01110.1016/j.bej.2016.05.011
  41. [41] McClure D. D., Nightingale J. K., Luiz A., Black S., Zhu J., Kavanagh J. M. Pilot-scale production of lutein using Chlorella vulgaris. Algal Research 2019:44:101707. https://doi.org/10.1016/j.algal.2019.10170710.1016/j.algal.2019.101707
  42. [42] Lin J. H., Lee D. J., Chang J. S. Lutein production from biomass: Marigold flowers versus microalgae. Bioresource Technology 2015:184:421–428, 2015. https://doi.org/10.1016/j.biortech.2014.09.09910.1016/j.biortech.2014.09.09925446782
  43. [43] Barkia I., Saari N., Manning S. R. Microalgae for high-value products towards human health and nutrition. Marine Drugs 2019:17(5):1–29. https://doi.org/10.3390/md1705030410.3390/md17050304656250531137657
  44. [44] Wang X., Zhang X. Separation, antitumor activities, and encapsulation of polypeptide from Chlorella pyrenoidosa. Biotechnology Progress 2013:29(3):681–687. https://doi.org/10.1002/btpr.172510.1002/btpr.172523606619
  45. [45] Cai T., Park S. Y., Li Y. Nutrient recovery from wastewater streams by microalgae: Status and prospects. Renewable and Sustainable Energy Reviews 2013:19:360–369. https://doi.org/10.1016/j.rser.2012.11.03010.1016/j.rser.2012.11.030
  46. [46] Abdel-Raouf N., Al-Homaidan A. A., Ibraheem I. B. M. Microalgae and wastewater treatment. Saudi Journal of Biologial Sciences 2012:19(3):257–275. https://doi.org/10.1016/j.sjbs.2012.04.00510.1016/j.sjbs.2012.04.005405256724936135
  47. [47] Lowrey J., Brooks M. S., McGinn P. J. Heterotrophic and mixotrophic cultivation of microalgae for biodiesel production in agricultural wastewaters and associated challenges—a critical review. Journal of Applied Phycology 2015:27(4):1485–1498. https://doi.org/10.1007/s10811-014-0459-310.1007/s10811-014-0459-3
  48. [48] Li Y., Zhou W., Hu B., Min M., Chen P., Ruan R. R. Integration of algae cultivation as biodiesel production feedstock with municipal wastewater treatment: Strains screening and significance evaluation of environmental factors. Bioresource Technology 2011:102(23):10861–10867. https://doi.org/10.1016/j.biortech.2011.09.06410.1016/j.biortech.2011.09.06421982450
  49. [49] Kim S., eun Park J., Cho Y. B., Hwang S. J. Growth rate, organic carbon and nutrient removal rates of Chlorella sorokiniana in autotrophic, heterotrophic and mixotrophic conditions. Bioresource Technology 2013:144:8–13. https://doi.org/10.1016/j.biortech.2013.06.06810.1016/j.biortech.2013.06.06823850820
  50. [50] Scarsella M., Belotti G., De Filippis P., Bravi M. Study on the optimal growing conditions of Chlorella vulgaris in bubble column photobioreactors. Chem. Eng. Trans 2010:20:85–90.
  51. [51] Babaei A., Mehrnia M. R., Shayegan J., Sarrafzadeh M. H., Amini E. Evaluation of Nutrient Removal and Biomass Production Through Mixotrophic, Heterotrophic, and Photoautotrophic Cultivation of Chlorella in Nitrate and Ammonium Wastewater. International Journal of Environmental Research 2018:12(2):167–178. https://doi.org/10.1007/s41742-018-0077-z10.1007/s41742-018-0077-z
  52. [52] Sharma A. K., Sahoo P. K., Singhal S., Patel A. Impact of various media and organic carbon sources on biofuel production potential from Chlorella spp. 3 Biotech 2016:6(2):1–12. https://doi.org/10.1007/s13205-016-0434-610.1007/s13205-016-0434-6490902028330202
  53. [53] Palmer C. M. A composite rating of algae tolerating organic pollution. Journal of Phycology 1969:5(1):78–82. https://doi.org/10.1111/j.1529-8817.1969.tb02581.x10.1111/j.1529-8817.1969.tb02581.x27097257
  54. [54] Wang L. et al. Anaerobic digested dairy manure as a nutrient supplement for cultivation of oil-rich green microalgae Chlorella sp. Bioresource Technology 2010:101(8):2623–2628. https://doi.org/10.1016/j.biortech.2009.10.06210.1016/j.biortech.2009.10.06219932957
  55. [55] Caporgno M. P. et al. Microalgae cultivation in urban wastewater: Nutrient removal and biomass production for biodiesel and methane. Algal Research 2015:10:232–239. https://doi.org/10.1016/j.algal.2015.05.01110.1016/j.algal.2015.05.011
  56. [56] Franchino M., Comino E., Bona F., Riggio V. A. Growth of three microalgae strains and nutrient removal from an agro-zootechnical digestate. Chemosphere 2013:92(6):738–744. https://doi.org/10.1016/j.chemosphere.2013.04.02310.1016/j.chemosphere.2013.04.02323706373
  57. [57] Oberholster P. J., Cheng P. H., Genthe B., Steyn M. The environmental feasibility of low-cost algae-based sewage treatment as a climate change adaption measure in rural areas of SADC countries. Journal of Applied Phycology 2019:31(1):355–363. https://doi.org/10.1007/s10811-018-1554-710.1007/s10811-018-1554-7
  58. [58] Palmer C. M. Algae in american sewage stabilization’s ponds. Rev. Microbiol. 1974:5(4):75–80.
  59. [59] Ayre J. M., Moheimani N. R., Borowitzka M. A. Growth of microalgae on undiluted anaerobic digestate of piggery effluent with high ammonium concentrations. Algal Research 2017:24:218–226. https://doi.org/10.1016/j.algal.2017.03.02310.1016/j.algal.2017.03.023
  60. [60] Álvarez-Díaz P. D., Ruiz J., Arbib Z., Barragán J., Garrido-Pérez M. C., Perales J. A. Freshwater microalgae selection for simultaneous wastewater nutrient removal and lipid production. Algal Research 2017:24:477–485. https://doi.org/10.1016/j.algal.2017.02.00610.1016/j.algal.2017.02.006
  61. [61] Chinnasamy S., Bhatnagar A., Hunt R. W., Das K. C. Microalgae cultivation in a wastewater dominated by carpet mill effluents for biofuel applications. Bioresource Technology 2010:101(9):3097–3105. https://doi.org/10.1016/j.biortech.2009.12.02610.1016/j.biortech.2009.12.02620053551
  62. [62] Mata T. M., Martins A. A., Caetano N. S. Microalgae for biodiesel production and other applications: A review. Renewable and Sustainable Energy Reviews 2010:14(1):217–232. https://doi.org/10.1016/j.rser.2009.07.02010.1016/j.rser.2009.07.020
  63. [63] Xiong W., Li X., Xiang J., Wu Q. High-density fermentation of microalga Chlorella protothecoides in bioreactor for microbio-diesel production. Applied Microbiology and Biotechnology 2008:78(1):29–36. https://doi.org/10.1007/s00253-007-1285-110.1007/s00253-007-1285-118064453
  64. [64] Tang H., Chen M., Garcia M. E. D., Abunasser N., Ng K. Y. S., Salley S. O. Culture of microalgae Chlorella minutissima for biodiesel feedstock production. Biotechnology and Bioengineering 2011:108(10):2280–2287. https://doi.org/10.1002/bit.2316010.1002/bit.2316021495011
  65. [65] Illman A. M., Scragg A. H., Shales S. W. Increase in Chlorella strains calorific values when grown in low nitrogen medium. Enzyme and Microbial Technology 2000:27(8):631–635. https://doi.org/10.1016/S0141-0229(00)00266-010.1016/S0141-0229(00)00266-0
  66. [66] dos Santos R. R., Kunigami C. N., Gomes Aranda D. A., Luz Lapa Teixeira C. M. Assessment of triacylglycerol content in Chlorella vulgaris cultivated in a two-stage process. Biomass and Bioenergy 2016:92:55–60. https://doi.org/10.1016/j.biombioe.2016.05.01410.1016/j.biombioe.2016.05.014
  67. [67] Serra-Maia R., Bernard O., Gonçalves A., Bensalem S., Lopes F. Influence of temperature on Chlorella vulgaris growth and mortality rates in a photobioreactor. Algal Research 2016:18:352–359. https://doi.org/10.1016/j.algal.2016.06.01610.1016/j.algal.2016.06.016
  68. [68] Bhola V., Desikan R., Santosh S. K., Subburamu K., Sanniyasi E., Bux F. Effects of parameters affecting biomass yield and thermal behaviour of Chlorella vulgaris. Journal of Bioscience and Bioengineering 2011:111(3):377–382. https://doi.org/10.1016/j.jbiosc.2010.11.00610.1016/j.jbiosc.2010.11.00621185776
  69. [69] Gong Q., Feng Y., Kang L., Luo M., Yang J. Effects of light and pH on cell density of Chlorella vulgaris. Energy Procedia 2014:61:2012–2015. https://doi.org/10.1016/j.egypro.2014.12.06410.1016/j.egypro.2014.12.064
  70. [70] Rai U., Deshar G., Rai B., Bhattarai K., Dhakal R., Rai S. Isolation and Culture Condition Optimization of Chlorella vulgaris. Nepal Journal of Science and Technology 2014:14(2):43–48. https://doi.org/10.3126/njst.v14i2.1041410.3126/njst.v14i2.10414
  71. [71] Kwon G., Nam J.-H., Kim D.-M., Song C., Jahng D. Growth and nutrient removal of Chlorella vulgaris in ammonia-reduced raw and anaerobically-digested piggery wastewaters. Environmental Engineering Research 2020:25(2):135–146. https://doi.org/10.4491/eer.2018.44210.4491/eer.2018.442
  72. [72] Yu H., Kim J., Lee C. Nutrient removal and microalgal biomass production from different anaerobic digestion effluents with Chlorella species. Scientific Reports 2019:9(1):1–13. https://doi.org/10.1038/s41598-019-42521-210.1038/s41598-019-42521-2646787830992470
  73. [73] Molazadeh M., Ahmadzadeh H., Pourianfar H. R., Lyon S., Rampelotto P. H. The use of microalgae for coupling wastewater treatment with CO2 biofixation. Frontiers in Bioengineering and Biotechnology 2019:7. https://doi.org/10.3389/fbioe.2019.0004210.3389/fbioe.2019.00042643378230941348
  74. [74] de-Bashan L. E., Trejo A., Huss V. A. R., Hernandez J. P., Bashan Y. Chlorella sorokiniana UTEX 2805, a heat and intense, sunlight-tolerant microalga with potential for removing ammonium from wastewater. Bioresource Technology 2008:99(11):4980–4989. https://doi.org/10.1016/j.biortech.2007.09.06510.1016/j.biortech.2007.09.06518024023
  75. [75] Li S., Luo S., Guo R. Efficiency of CO2 fixation by microalgae in a closed raceway pond. Bioresource Technology 2013:136:267–272. https://doi.org/10.1016/j.biortech.2013.03.02510.1016/j.biortech.2013.03.025
  76. [76] Kumar K., Dasgupta C. N., Das D. Cell growth kinetics of Chlorella sorokiniana and nutritional values of its biomass. Bioresource Technology 2014:167:358–366. https://doi.org/10.1016/j.biortech.2014.05.11810.1016/j.biortech.2014.05.118
  77. [77] Morita M., Watanabe Y., Saiki A. H. High photosynthetic productivity of green microalga Chlorella sorokiniana. Applied Biochemistry and Biotechnology 2000:87:203–218. https://doi.org/10.1385/ABAB:87:3:20310.1385/ABAB:87:3:203
  78. [78] Lammers P. J. et al. Review of the cultivation program within the National Alliance for Advanced Biofuels and Bioproducts. Algal Research 2017:22:166–186. https://doi.org/10.1016/j.algal.2016.11.02110.1016/j.algal.2016.11.021
  79. [79] Franco M. C., Buffing M. F., Janssen M., Lobato C. V., Wijffels R. H. Performance of Chlorella sorokiniana under simulated extreme winter conditions. Journal of Applied Phycology 2012:24(4):693–699. https://doi.org/10.1007/s10811-011-9687-y10.1007/s10811-011-9687-y339250322993457
  80. [80] Li T., Zheng Y., Yu L., Chen S. High productivity cultivation of a heat-resistant microalga Chlorella sorokiniana for biofuel production. Bioresource Technology 2013:131:60–67. https://doi.org/10.1016/j.biortech.2012.11.12110.1016/j.biortech.2012.11.12123340103
  81. [81] Park J. B. K., Craggs R. J., Shilton A. N. Wastewater treatment high rate algal ponds for biofuel production. Bioresource Technology 2011:102(1):35–42. https://doi.org/10.1016/j.biortech.2010.06.15810.1016/j.biortech.2010.06.15820674341
  82. [82] Murwanashyaka T., Shen L., Ndayambaje J. D., Wang Y., He N., Lu Y. Kinetic and transcriptional exploration of Chlorella sorokiniana in heterotrophic cultivation for nutrients removal from wastewaters. Algal Research 2017:24:467–476. https://doi.org/10.1016/j.algal.2016.08.00210.1016/j.algal.2016.08.002
  83. [83] Li T., Zheng Y., Yu L., Chen S. Mixotrophic cultivation of a Chlorella sorokiniana strain for enhanced biomass and lipid production. Biomass and Bioenergy 2014:66:204–213. https://doi.org/10.1016/j.biombioe.2014.04.01010.1016/j.biombioe.2014.04.010
  84. [84] Rosenberg J. N., Kobayashi N., Barnes A., Noel E. A., Betenbaugh M. J., Oyler G. A. Comparative analyses of three Chlorella species in response to light and sugar reveal distinctive lipid accumulation patterns in the microalga C. sorokiniana. PLoS One 2014:9(4). https://doi.org/10.1371/journal.pone.009246010.1371/journal.pone.0092460397468224699196
  85. [85] Ribeiro J. E. S. et al. Production of Chlorella protothecoides biomass, chlorophyll and carotenoids using the dairy industry by-product scotta as a substrate. Biocatalysis and Agricultural Biotechnology 2017:11:207–213. https://doi.org/10.1016/j.bcab.2017.07.00710.1016/j.bcab.2017.07.007
  86. [86] Feng X., Walker T. H., Bridges W. C., Thornton C., Gopalakrishnan K. Biomass and lipid production of Chlorella protothecoides under heterotrophic cultivation on a mixed waste substrate of brewer fermentation and crude glycerol. Bioresource Technology 2014:166:17–23. https://doi.org/10.1016/j.biortech.2014.03.12010.1016/j.biortech.2014.03.12024880808
  87. [87] Shi X. M., Chen F., Yuan J. P., Chen H. Heterotrophic production of lutein by selected Chlorella strains. Journal of Applied Phycology 1997:9(5):445–450. https://doi.org/10.1023/A:100793821565510.1023/A:1007938215655
  88. [88] Xiufeng Li Q. W., Han Xu. Large-Scale Biodiesel Production From Microalga Chlorella protothecoides Through Heterotrophic Cultivation in Bioreactors. Biotechnology and Bioengineering 2007:98(4):764–771. https://doi.org/10.1002/bit.2148910.1002/bit.2148917497732
  89. [89] Shi X. M., Jiang Y., Chen F. High-yield production of lutein by the green microalga Chlorella protothecoides in heterotrophic fed-batch culture. Biotechnology Progress 2002:18(4):723–727. https://doi.org/10.1021/bp010198710.1021/bp010198712153304
  90. [90] Ramos Tercero E. A., Sforza E., Morandini M., Bertucco A. Cultivation of Chlorella protothecoides with urban wastewater in continuous photobioreactor: Biomass productivity and nutrient removal. Applied Biochemistry and Biotechnology 2014:172(3):1470–1485. https://doi.org/10.1007/s12010-013-0629-910.1007/s12010-013-0629-924222500
  91. [91] Hayashi T., Otaki R., Hirai K., Tsuzuki M., Sato N. Optimization of seawater-based triacylglycerol accumulation in a freshwater green alga, Chlorella kessleri, through simultaneous imposition of lowered-temperature and enhanced-light intensity. Algal Research 2017:28:100–107. https://doi.org/10.1016/j.algal.2017.10.01610.1016/j.algal.2017.10.016
  92. [92] Wang Y., Chen T., Qin S. Differential fatty acid profiles of Chlorella kessleri grown with organic materials. Chemical Technology and Biotechnology 2013:88(4):651–657. https://doi.org/10.1002/jctb.388110.1002/jctb.3881
  93. [93] Soares A. T., da Costa D. C., Vieira A. A. H., Antoniosi Filho N. R. Analysis of major carotenoids and fatty acid composition of freshwater microalgae. Heliyon 2019. https://doi.org/10.1016/j.heliyon.2019.e0152910.1016/j.heliyon.2019.e01529648420731049438
  94. [94] Liu Y., Lv J., Feng J., Liu Q., Nan F., Xie S. Treatment of real aquaculture wastewater from a fishery utilizing phytoremediation with microalgae. Chemical Technology and Biotechnology 2019:94(3):900–910. https://doi.org/10.1002/jctb.583710.1002/jctb.5837
  95. [95] Bhatnagar A., Bhatnagar M., Chinnasamy S., Das K. C. Chlorella minutissima – A promising fuel alga for cultivation in municipal wastewaters. Applied Biochemistry and Biotechnology 2010:161(1–8):523–536. https://doi.org/10.1007/s12010-009-8771-010.1007/s12010-009-8771-019882116
  96. [96] Gautam K., Pareek A., Sharma D. K. Biochemical composition of green alga Chlorella minutissima in mixotrophic cultures under the effect of different carbon sources. Journal of Bioscience and Bioengineering 2013:116(5):624–627. https://doi.org/10.1016/j.jbiosc.2013.05.01410.1016/j.jbiosc.2013.05.01423768469
  97. [97] Li Z. S., Yuan H. L., Yang J. S., Li B. Z. Optimization of the biomass production of oil algae Chlorella minutissima UTEX2341. Bioresource Technology 2011:102(19):9128–9134. https://doi.org/10.1016/j.biortech.2011.07.00410.1016/j.biortech.2011.07.00421803576
  98. [98] Daliry S., Hallajisani A., Roshandeh J. M., Nouri H., Golzary A. Investigation of optimal condition for Chlorella vulgaris microalgae growth. Glob. J. Environ. Sci. Manag. 2017:3(2):217–230.
  99. [99] Sharma R. Effects of Culture Conditions on Growth and Biochemical Profile of Chlorella Vulgaris. Journal of Plant Pathology & Microbiology 2012:3(5). https://doi.org/10.4172/2157-7471.100013110.4172/2157-7471.1000131
  100. [100] Chen Z., Zhang X., Jiang Z., Chen X., He H., Zhang X. Light/dark cycle of microalgae cells in raceway ponds: Effects of paddlewheel rotational speeds and baffles installation. Bioresource Technology 2016:219:387–391. https://doi.org/10.1016/j.biortech.2016.07.10810.1016/j.biortech.2016.07.10827504995
  101. [101] Zheng Y., Li T., Yu X., Bates P. D., Dong T., Chen S. High-density fed-batch culture of a thermotolerant microalga Chlorella sorokiniana for biofuel production. Applied Energy 2013:108:281–287. https://doi.org/10.1016/j.apenergy.2013.02.05910.1016/j.apenergy.2013.02.059
  102. [102] Qiu R., Gao S., Lopez P. A., Ogden K. L. Effects of pH on cell growth, lipid production and CO2 addition of microalgae Chlorella sorokiniana. Algal Research 2017:28:192–199. https://doi.org/10.1016/j.algal.2017.11.00410.1016/j.algal.2017.11.004
  103. [103] Ramsundar P., Guldhe A., Singh P., Bux F. Assessment of municipal wastewaters at various stages of treatment process as potential growth media for Chlorella sorokiniana under different modes of cultivation. Bioresource Technology 2017:227:82–92. https://doi.org/10.1016/j.biortech.2016.12.03710.1016/j.biortech.2016.12.03728013140
  104. [104] Khalid A. A. H., Yaakob Z., Abdullah S. R. S., Takriff M. S. Growth improvement and metabolic profiling of native and commercial Chlorella sorokiniana strains acclimatized in recycled agricultural wastewater. Bioresource Technology 2018:247:930–939. https://doi.org/10.1016/j.biortech.2017.09.19510.1016/j.biortech.2017.09.19530060432
  105. [105] Patel A. K., Joun J. M., Hong M. E., Sim S. J. Effect of light conditions on mixotrophic cultivation of green microalgae. Bioresource Technology 2019:282:245–253. https://doi.org/10.1016/j.biortech.2019.03.02410.1016/j.biortech.2019.03.02430870690
  106. [106] Li Y., Zhou W., Hu B., Min M., Chen P., Ruan R. R. Effect of light intensity on algal biomass accumulation and biodiesel production for mixotrophic strains Chlorella kessleri and Chlorella protothecoide cultivated in highly concentrated municipal wastewater. Biotechnology and Bioengineering 2012:109(9):2222–2229. https://doi.org/10.1002/bit.2449110.1002/bit.2449122407758
  107. [107] Ördög V. et al. Effect of temperature and nitrogen concentration on lipid productivity and fatty acid composition in three Chlorella strains. Algal Research 2016:16:141–149. https://doi.org/10.1016/j.algal.2016.03.00110.1016/j.algal.2016.03.001
  108. [108] Juneja A., Ceballos R. M., Murthy G. S. Effects of environmental factors and nutrient availability on the biochemical composition of algae for biofuels production: A review. Energies 2013:6(9):4607–4638. https://doi.org/10.3390/en609460710.3390/en6094607
  109. [109] Lv J. M., Cheng L. H., Xu X. H., Zhang L., Chen H. L. Enhanced lipid production of Chlorella vulgaris by adjustment of cultivation conditions. Bioresource Technology 2010:101(17):6797–6804. https://doi.org/10.1016/j.biortech.2010.03.12010.1016/j.biortech.2010.03.12020456951
  110. [110] Fu W., Gudmundsson O., Feist A. M., Herjolfsson G., Brynjolfsson S., Palsson B. Maximizing biomass productivity and cell density of Chlorella vulgaris by using light-emitting diode-based photobioreactor. Journal of Biotechnology 2012:161(3):242–249. https://doi.org/10.1016/j.jbiotec.2012.07.00410.1016/j.jbiotec.2012.07.00422796827
  111. [111] Kobayashi N. et al. Characterization of three Chlorella sorokiniana strains in anaerobic digested effluent from cattle manure. Bioresource Technology 2013:150:377–386. https://doi.org/10.1016/j.biortech.2013.10.03210.1016/j.biortech.2013.10.03224185420
  112. [112] Deng X. Y. et al. Glucose addition-induced changes in the growth and chemical compositions of a freshwater microalga Chlorella kessleri. Chemical Technology and Biotechnology 2019:94(4):1202–1209. https://doi.org/10.1002/jctb.587010.1002/jctb.5870
DOI: https://doi.org/10.2478/rtuect-2020-0067 | Journal eISSN: 2255-8837 | Journal ISSN: 1691-5208
Language: English
Page range: 203 - 220
Published on: Sep 23, 2020
Published by: Riga Technical University
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2020 Baiba Ievina, Francesco Romagnoli, published by Riga Technical University
This work is licensed under the Creative Commons Attribution 4.0 License.